

Volume 12 of 16 -**Chapter 7 Appendices**

December 2022

THIS PAGE INTENTIONALLY LEFT BLANK

Appendices

Appendix 0-1	Submittal and Consistency Checklists
Appendix 0-2	SEPA Documentation
Appendix 0-3	Comments and Response
Appendix 0-4	Consumer WSP Meeting Minutes
Appendix 1-1	Policy Manual
Appendix 1-2	DOH Water Facility Inventory Forms
Appendix 1-3	DOH Operating Permits
Appendix 1-4	Warm Beach ALOP DOH Approval
Appendix 2-1	North Snohomish Coordinated Water System Plan
Appendix 2-2	Pertinent District Resolutions
Appendix 2-3	Current Satellite Management Program
Appendix 3-1	Reclaimed Water Reuse References
Appendix 3-2	Agreements
Appendix 3-3A	Snohomish County Land Use Map
Appendix 3-3B	Lake Stevens Land Use
Appendix 3-3C	Granite Falls Land Use
Appendix 3-3D	Gold Bar Land Use
Appendix 3-3E	Marysville Land Use
Appendix 3-3F	Snohomish City Land Use
Appendix 5-1	Water Multi-Family Unit Count
Appendix 5-2	Snohomish County FAZ Map
Appendix 6-1	Conservation Rates Meeting Agenda
Appendix 7-1	Hydraulic Model Calibration Tech Memo
Appendix 7-2	Storage Analyses
Appendix 8-1	2001 Drought Response Plan
Appendix 8-2	Water Rights
Appendix 8-3A	Wellhead Protection Program Lake Stevens
Appendix 8-3B	Kayak Wellhead Protection Plan

- Appendix 8-3C Lake Stevens Aquifer Study Figure 1
- Appendix 9-1 Risk and Resilience Tech Memo
- Appendix 9-2 Emergency Response Plan
- Appendix 9-3 Water Main Break Form
- Appendix 10-1A SnoPUD 1 2019 Ground Water Coliform Monitoring Plan with Appendices
- Appendix 10-18 SnoPUD 1 2019 Surface Water Coliform Monitoring Plan with Appendices
- Appendix 10-2 Disinfection By-Product Monitoring Plans
- Appendix 10-3 Monitoring Requirements
- Appendix 10-4 Consumer Confidence Reports
- Appendix 10-5 Water Utility Cross-Connection Control SOP
- Appendix 10-6 Public Notification Forms
- Appendix 11-1 Cost Estimating Methodology
- Appendix 12-1 Snohomish PUD Financial Model

Appendix 7-1

Hydraulic Model Calibration Tech Memo

THIS PAGE INTENTIONALLY LEFT BLANK

то:	Brant Wood, Snohomish PUD Kevin Presler, Snohomish PUD Max Selin, Snohomish PUD
FROM:	Matt Sellers, P.E., Sedaru Behnaz Khakbaz, Ph.D., P.E., Sedaru Jennifer Wood, P.E., Sedaru
CC:	Paul Hauffen, Sedaru
DATE:	July 30, 2019

1 Introduction

This technical memorandum (TM) has been developed by Sedaru, Inc. for the Snohomish Public Utility District No. 1 (SNOPUD/District) to report on the hydraulic model updates and the results of the Steady-State (SS) model calibration. The project goals are listed below:

- Update existing hydraulic model from the most current GIS geodatabase.
- Allocate existing Average Day Demands (ADD).
- Hydrant Testing Plan consisting of up to 10 hydrant test locations.
- Steady-State model calibration against 10 hydrant flow tests.
- Develop master planning scenarios.

This TM includes the following sections:

- Section 1 Introduction
- Section 2 Model Updates
- Section 3 Existing System
- Section 4 Demand Allocation
- Section 5 Steady State Calibration
- Section 6 Master Planning Scenario Development
- Section 7 Recommendations

2 Model Updates

The existing SNOPUD hydraulic model was updated from the most current GIS geodatabase. The focus of the update was only Lake Stevens area per SNOPUD. The existing pipe ID field and facility status field were used to identify updates with the District's feedback. Hydrant laterals were not imported. Existing facilities

were assumed to be accurately represented in the existing model. Only new or updated facilities were reviewed for inclusion in the updated model.

3 Existing System

The SNOPUD hydraulic system includes 26 pressure zones. Figure 1 on the following page shows a GIS map of the existing system and pressure zones. Table 1 lists pressure zones and their abbreviated names per the naming convention identified in the existing model. This section summarizes the basic elements included in the hydraulic model.

Pressure Zone	Abbreviated Name
Sunnyside	Sun
10th Street SE	10thST
28TH ST SE	28THST
44th Street	44TH
Blue Spruce & Rainbow Springs	Blu/Rsp
Cavaleros	Cav
Cedar Ln / Indian Summer	Cdr
Crest Lane	Crst
Dubuque	Dub
Dubuque Southwest	DubSW
E. Everett	EEv
Engebretson	Eng
Granite Falls	Gra
Hillcrest	Hil
Jordan	Jor
Jordan River Trails	JRT
Kla-Ha-Ya (East)	KlaE
Kla-Ha-Ya (North)	KlaN
Lake Stevens	Lak
Lake Cassidy	LkC

Table 1. SNOPUD System Pressure Zones

Pressure Zone	Abbreviated Name
Meeker Retreat	Meeker
Machias Ridge East (157th Ave SE)	MRE
Lake Roesiger	Ros
Sunset Ridge	Snr
Soper Hill	Soper
Walker Hill	Wal

Figure 1 Water System Facilities and Pressure Zones

Snohomish County Public Utility District No. 1

3.1 Sources of Supply

The system receives its water supply from the following primary sources summarized in Table 2.

Table 2. Sources of Supply Summary						
Name	Model ID	HGL (ft) (in model)				
123rd Avenue SE Tap (Kla-Ha-Ya)	123RD_AVE_TAP	430				
Machias Ridge East (157th Avenue SE Tap)	157TH_AVE_TAP	478				
Cavaleros Pump Station Tap	CAVALEROS_TAP	461				
Dutch Hill Tap #1 (Dubuque)	DUTCHH_TAP1	545				
Dutch Hill Tap #2 (Dubuque)	DUTCHH_TAP2	545				
East Hewitt Pump Station Tap	EHEWITT_TAP	460				
Glenwood Pump Station Tap	GLENWOOD_TAP	462				
Lake Steven Well	LK_STVNS_WELL	166				
Lake Roesiger Tap	LROESIGER_TAP	550				
Machias Pump Station Tap	MACHIAS_TAP	464				
Soperwood Pump Station Tap (Marysville JOA)	SOPERWOOD_TAP	432				
*Williams Road Tap	WILLIAMSRD_TAP	466				

Table 2. Sources of Supply Summary

*Abandoned per SNOPUD

3.2 **Pump Stations**

There are 13 pump stations and 40 pumps in the model. All but four (4) pumps have pump curves defined as single design point. The remaining four pumps have multi-point curves defined in the hydraulic model. Typically, multi-design points based on manufacturer curves, recent pump tests, or SCADA are preferred. Single design points can result in inaccurate simulated flow if the pump is operating far away from the design point. Table 3 summarizes the pump stations in the system.

Table 3. Pump Stations Summary					
		Desig	n Points		
Name	Model ID	Head	Flow	From Zone ^B	To Zone ^B
		(ft)	(gpm)		
	EHEWITT P1	40	800		
East Hewitt	EHEWITT P2	99	1 280	EHEWITT_TAP	Lak
	SOPERWOOD P1	128	90		
Soperwood	SOPERWOOD P2	106	1.510	SOPERWOOD_TAP	Lak
	LROESIGER P1	280	450		
Lake Roesiger	LROESIGER P2	280	450	LROESIGER_TAP	Ros
	LBOSWORTH P1	132	202		
Lake Bosworth	LBOSWORTH P2	132	202	Gra	Bos
Machias Ridge East	 MACHIAS_RE_P1	190	75	157TH_AVE_TAP	MRE
Lake Stevens Well PS	LK_STVNS_WELLPUMP	395	1,000	LK_STVNS_WELL	Lak
Dubuque	DUBUQUE_P1	90	120	Dub	44TH
	GLENWOOD_P1	35	1,375		Lak
	GLENWOOD_P2	40	2,000		Lak
Glenwood	GLENWOOD_P3	80	500	GLENWOOD_TAP	
	GLENWOOD_P4	80 1,000		Hil	
	GLENWOOD_P5	80	1,000		
	LCASSIDY_P1	LK_CA	ASSIDY1 ^A		
Lake Cassidy	LCASSIDY_P2	LK_CASSIDY2_3 ^A		lak	IKC
Lake Cassiuy	LCASSIDY_P3	LK_CASSIDY2_3 ^A		Lak	LKC
	LCASSIDY_P4	LK_CAS	SSIDY4_5 ^A		
	GRANITEFALLS_P1	273	1,146		
Granite Falls	GRANITEFALLS_P2	370	815	lak	Gra
Granice rans	GRANITEFALLS_P3	374	1,218	Luk	Giù
	GRANITEFALLS_P4	374	2,218		
	MACHIAS_P1	32	1,177		
	MACHIAS_P2	130	400		
Machias	MACHIAS_P3	130	1,150	MACHIAS_TAP	Lak
	MACHIAS_P4	130	1,150		
	MACHIAS_P5	130	1,150		
_	WALKERHILL_P1	80	95		
	WALKERHILL_P2	80	200		
Walker Hill	WALKERHILL_P3	80	200	Lak	Wal
	WALKERHILL_P4	80	500		
	WALKERHILL_P5	80	500		
	WALKERHILL_P6	80	500		
	HILLCREST_P1	80	100		
	HILLCREST_P2	80	300		
Hillcrest	HILLCREST_P3	80	300	Lak	Hil
	HILLCREST_P4	80	400		
	HILLCREST_P5	80	400		

^A Pump curves in model.

^B "From" and "To" Zones use abbreviations in the model.

3.3 Reservoirs

There are seven (7) cylindrical tanks in the model with a total capacity of 14.17 MG. Note this capacity is based on tank dimensions available in the model. None of the tank dimensions were modified or changed in this study. Table 4 summarizes the reservoirs within the system.

Name	Model ID	Diameter (ft)	Ground Elevation (ft)	Height (ft)	Max Elevation (ft)*	Capacity (MG)
Granite Falls Tank	GRANITE_FALLS_TANK1	120	695	32	727	2.71
Hillcrest Tank #1	HILLCREST_TANK1	100	453	52	505	3.05
Hillcrest Tank #2	HILLCREST_TANK2	100	450	52	502	3.05
Lake Bosworth Tank	LBOSWORTH_TANK1	46	732	83	815	1.03
Lake Roesiger Tank	LROESIGER_TANK1	42	774	39	813	0.41
Walker Hill Tank #1	WALKERHILL_TANK1	70	428	68	496	1.96
Walker Hill Tank #2	WALKERHILL_TANK2	70	422	68	490	1.96
Total Capacity (MG)						14.17

Table	1 R	ocorva	hire	Summari	
Table 4	4. K	eservo	JIS	Summary	v

*High Water Level

3.4 Pressure Regulating Stations

There are 38 regulating stations in the hydraulic model defining pressure zones. In most cases, each station is comprised of a small and large PRV. There are 35 large and 25 small PRVs in the model. Table 5 provides the PRV settings within the model. These settings were updated for this project based on spreadsheets provided by SNOPUD. A summary of the pressure regulating stations is shown below in Table 5.

Table 5. Fressure Regulating Stations Summary					
Regulating Station Name	Size	Model IDs	From Zone	To Zone	Setting (psi)
	8-inch	V100001	Gra	lor	63
PRV-1	2.5-inch	V100002	Gla	101	68
	8-inch	V100004	lor	Blu/Rsp	50
PKV-Z	2-inch	V100005	JOI		57
	8-inch	V100007	Gra	Jor	105
PRV-3	3-inch	V100008			115
	8-inch	V100011	lor		40
PRV-4	2-inch	V100012	JOL	вій/кsp	48
PRV-5	2-inch	V100014		Div /Dav	55
	1-inch	V100118	101	biu/KSp	62
PRV-6	2-inch	V100015	Jor	Blu/Rsp	61

Table 5. Pressure Regulating Stations Summary

Regulating Station Name	Size	Model IDs	From Zone	To Zone	Setting (psi)
PRV-7	1-inch	V100016	Jor	Blu/Rsp	65
	8-inch	V100065	-		45
PRV-8	2-inch	V100067	Eng	Car	55
	8-inch	V100020	Curr	_	45
PRV-9	2-inch	V100018	Gra	Eng	52
PRV-10	8-inch	V100021	Lak	Gra	85
PRV-11	6-inch	V100023	Bos	Gra	123
	8-inch	V100030	Conor	Sum	92
PRV-15	2-inch	V100031	Soper	Sun	97
DD\/ 17	2-inch	V100035	Por	Spr	65
PRV-17	1-inch	V100036	100036	2111	70
	8-inch	V100037	Carr		35
FRV-10	2-inch	V100038	Cav	IOTHSU	40
PRV-20	2-inch	V100040	Cav	28THSt	75
PRV-21	8-inch	V100041	Lak	Cav	90
PRV-23	8-inch	V100046	Lak	Wil	60
	6-inch	V100048	ця	Lak	35
PKV-24	3-inch	V100049	HII	LdK	35
	6-inch	V100050	Dub	Dub	75
FILV-23	3-inch	V100051			78
	6-inch	V100052	Dub	DubSW	85
FIXV-20	2-inch	V100053		Dubsvv	95
PRV-27	2-inch	V100055	Jor	Meeker	99
DD//_28	2-inch	V100132	Jor	JRT	0
1 1 1 2 0	1.25-inch	V100058			28
PRV-29	6-inch	V100059	Dub	Dub	50
PRV-30	2-inch	V100060	Dub	KlaE	95
110-50	1-inch	V100061	Dub		100
PRV-31	6-inch	V100062	Dub	KlaN	45
	2-inch	V100063	Dub	Kiuii	50
PRV-33	2-inch	V100074	Dub	DubSW	55
110 33	1-inch	V100073	Dub	Dubsw	60
PRV-37	2-inch	V100070	Lak	Hil	99
PRV-42	2-inch	V100017	Cdr	Eng	50
PRV-43	2-inch	V100081	Jor	Crst	58
PRV-45	6-inch	V100126	Lak	Cav	67
	2-inch	V100127	Luk	Cuv	70
PRV-46	8-inch	V100085	Cav	10THSt	43
	2.5-inch	V100086	Cuv	1011130	48
PRV-47	8-inch	V100087	Lak	Soper	52
	4-inch	V100088	Luix	5000	55
PRV-52	8-inch	V100096	Lak	10THS+	50
	2.5-inch	V100097	Luix	1011150	60
PRV-53	8-inch	V100098	Cav	Eev	40

Regulating Station Name	Size	Model IDs	From Zone	To Zone	Setting (psi)
	2.5-inch	V100099			45
PRV-54	12-inch	V100100	Lak	Cav	67
PRV-60	2-inch	V100101	DubSW	DubSW	70
	8-inch	V100124	Dec	Cro	70
PRV-01	2.5-inch	V100125	RUS	Gra	/8
PRV-65	8-inch	V100131	Wal	Lak	25

3.5 Pipelines

The District's water distribution system is comprised of 342 miles of pipelines. Pipeline diameters, materials, and age are summarized in Table 6, Table 7 and Table 8, respectively. C-factors have not been adjusted in this project and typically range between 100 to 140.

Diameter (in)	Length (ft)	%				
1 - <6	218,911	12				
6 - <8	158,402	9				
8 - <12	991,747	55				
12 - <16	351,518	19				
16 - <24	64,347	4				
24 - <36	20,763	1				
>= 36	0	<1				
Total	1,805,687	100%				

Table 6. Pipeline Diameter Summary

Table 7. Pipeline Material Summary

Material	Length (ft)	%
AC	92,948	5
CI	24,661	1
С	637	<1
PVC	81,493	5
DI	1,583,500	88
PE	17,285	1
G	336	<1
STL	156	<1
Unknown	4,670	<1
Total	1,805,687	100%

Table 8. Pipeline Age Summary						
Age	Length (ft)	%				
<1940	0	<1				
1940 - 1959	18,564	1				
1960 - 1979	153,365	8				
1980 - 1999	898,757	50				
>2000	715,788	40				
Unknown	19,213	1				
Total	1,805,687	100%				

4 Demand Allocation

Demand data was stored as three (3) usage types in the model: base consumption demand, wholesale demand, and non-revenue water (NRW) demand which sums up to the Average Day Demand (ADD). Base consumption demand data was provided by SNOPUD as average annual demand per model node. This was directly imported into the existing model. Wholesale user demands within Lake Stevens area were also provided by the District and allocated to the nearest nodes in the model.

NRW is calculated as the difference between production and consumption, where the District provided the production and consumption data, and Sedaru calculated the NRW. NRW was allocated to the model based on pipe length, where the nodes connected to a pipe receives NRW demand based on the pipe's length proportionally when compared with the total system pipe length. Since it is impossible to know where all NRW exists, this method assumes that most NRW in the system is background leakage, which is typically true for most water systems. Therefore, areas with more pipe length are associated with connections that are more prone to background leakage such as tees, joints, and service connections. Table 9 summarizes the system demands.

Table 9. Sys	Table 9. System Demands				
Туре	Demand (gpm)				
Base Consumption	2,701				
Wholesale	314				
NRW	310				
Total (ADD)	3,325 (4.79 MGD)				

Table 9. System Demands

5 Hydraulic Model Calibration

The SNOPUD hydraulic model was calibrated for steady-state conditions, and the model results were compared against 10 hydrant flow tests conducted throughout the distribution system. Each test consists

of opening a hydrant (i.e., flow hydrant) and flowing the open hydrant until the residual pressure at an adjacent hydrant (i.e., residual hydrant) stabilizes at least 10 psi lower than the static pressure recorded at the residual hydrant. The flow measured at the hydrant is then input to the hydraulic model as a fire flow demand and the pressure at the node that represents the residual hydrant with and without this fire flow demand will then be compared with the field residual and static pressures. The location of 10 fire hydrant tests are shown in Figure 2.

Figure 2. Fire Hydrant Test Locations

5.1 Calibration Criteria

The calibration effort included only steady-state (SS) model scenario. The goal of the SS calibration was for the pressure drop between static and residual at the modeled residual hydrants to match field pressures drop within 5 psi at 90 percent of the hydrant test locations. The primary calibration targets for SS calibration were pressure values (static pressures and residual pressures) and the pressure drop between static and flowing hydrants. Calibration criteria for the steady-state calibration is summarized in Table 10.

Pressure Drop Range (psi)	Match				
0-3	Excellent				
3 – 5	Good				
5 – 10	Fair				
>10	Poor				

Table 10. Calibration Criteria

5.2 Calibration Procedure and Results

For the SS model calibration, the model was setup to represent the boundary conditions of each hydrant test. SCADA provided by SNOPUD was used to determine boundary conditions, if available. The SS demands were estimated based on the ADD demands. Because demands were not known for the calibration day except for few wholesale customers (provided by SNOPUD as SCADA), the SS demands were adjusted during the calibration process to closely match the observed data by no more than +/- 5%.

The calibration procedure was an iterative process that required a trial-and-error approach to resolve differences between hydrant test data and the model. Model simulations were run, and the results were compared to the hydrant test data. Where obvious differences existed between the model and observed data, these differences were investigated. The District's staff provided additional information when available to help reconcile the differences.

As shown in Table 11, the pressure drop between static and residual at the modeled residual hydrants match the field pressure drop within 5 psi at 80% of the hydrant test locations. FH tests 1 and 3 were outside the acceptable limits.

	Table 11. Summary of Calibration Results												
Test Zo	Zone	Date/Time	Hydrant No.	Flow E (Flow During Test (gpm)		Field Pressure (psi)		Model Pressure (psi)		(psi)	Drop	Drop Match
			(Flow/Observation)	Range	Calibration	Static	Residual	Drop	Static	Residual	Drop	Difference	
1	Ros	3/1/19 9:56 AM	862/863	800- 1,900	1,713	87	29	58	81	17	64	6	Fair
2	Gra	3/1/19 11:04 AM	1649/1647	800- 1,800	1,701	80	15	65	81	16	65	0	Excellent
3	Gra	3/1/19 12:29 PM	1321/1322	700- 1,300	1,140	96	24	72	99	8	91	19	Poor
4	Jor	3/4/19 9:18 AM	897/896	900- 1,600	1,500	104	23	81	104	23	81	0	Excellent
5	Gra	3/4/19 10:40 AM	2701/2700	900- 1,300	1,176	72	23	49	77	28	49	0	Excellent
6	Wal	3/8/19 1:29 PM	1738/1740	800- 1,800	1,550	74	33	41	75	29	46	5	Good
7	Lak	3/4/19 12:42 PM	1802/919	800- 3,400	3,066	112	87	25	106	81	25	0	Excellent
8	Lak	2/27/19 12:36 PM	1906/1905	700- 2,700	2,250	112	72	40	113	76	37	-3	Excellent
9	Cav	2/27/19 11:11 AM	1262/1263	1,300- 2,600	2,520	106	72	34	107	73	34	0	Excellent
10	Lak	2/27/19 9:30 AM	1281/1282	1,300- 2,000	1,850	164	29	135	165	30	135	0	Excellent

5.2.1 Revisited Fire Hydrant Test Data

Based on the initial test results, Sedaru requested SNOPUD to revisit tests 1, 3, and 6 to confirm static gauge pressures and elevations for both the flow and residual hydrants at those locations. In addition, fire hydrant test 6 was re-done by SNOPUD and test data were provided for additional calibration efforts. The new information validated the original gauge pressures and elevations and did not significantly improve the results of the calibration for the above-mentioned test locations.

5.2.2 Calibration Discussion

As with any hydraulic model, there is always room for improvement of accuracy. Model accuracy improves when there is more and better data available; however, some data can require significant effort to gather. The engineer/modeler must be able to weigh the required level of investment versus the gain in model accuracy and determine if it is worth pursuing based on what the intended use of the model.

Overall, the model results matched field results well for the fire hydrant tests (i.e., 80% met calibration target). Possible causes for the discrepancies between the model and field data for tests 1 and 3 are listed below:

Test 1:

Test 1 was within 6 psi of matching the observed pressure drop, giving this test a "fair" calibration match. There are a number of possible reasons the test did not see a better match:

- Test Duration: The fire flow test data varies by several hundred gallons per minute every few seconds and is therefore difficult to determine how accurate the test data is. One possible cause was the duration was not long enough to produce an accurate average flow and pressure measurement. It is expected the hydrant test to have some variability in flow and pressure, however this error is corrected by running the flow test long enough to reach a stable flow and to produce enough data for an accurate average reading. Typically, a minimum flow duration of five (5) minutes is recommended to achieve this. If the flow never seems to stabilize, then an alternative site within that pressure zone may provide better results.
- Unknown System Issues: While boundary conditions are thought to be well known for this test, the static pressure is 6 psi lower than observed. A second hydrant test in this pressure zone at a different location may reveal what is causing the observed differences in pressure. In addition, an extended period calibration against SCADA with continuous HPR records at this location would provide excellent data to help uncover unknown issues for this zone.
- Equipment Error: While thought to be less likely, the difference in residual pressure could be explained by uncalibrated equipment. The flow from the test data would correlate with a high pressure drop in the system, however, that was not observed. Connectivity and headlosses were thoroughly checked within this zone to eliminate the model as the source of the simulated headloss.
- SCADA or Measured Data Error: The reported static pressure at the residual hydrant might be incorrect as the calculated HGL at the hydrant test location is higher than the HGL of the zone (i.e., HGLs of Lake Roesiger and Lake Bosworth tanks) from SCADA. A closed valve between the test site and Lake Roesiger Tank could result in a boosted pressure coming from Lake Roesiger

Pump Station, however when this was tested in the model, the pressure drop was too great. While a hydraulic bottleneck may still be a possible cause, it should be investigated by comparing new extended period SCADA data against an EPS model in order to have the best data needed to discover the issue.

Test 3

Test 3 was within 19 psi of matching the observed pressure drop, giving this test a "poor" calibration match. There are a number of possible reasons the test did not see a better match:

- **Test Duration:** Similar to test 1, the fire flow test data varies by several hundred gallons per minute every few seconds and is therefore difficult to determine how accurate the test data is. One possible cause was the duration was not long enough to produce an accurate average flow and pressure measurement. It is expected the hydrant test to have some variability in flow and pressure, however this error is corrected by running the flow test long enough to reach a stable flow and to produce enough data for an accurate average reading. Typically, a minimum flow duration of five (5) minutes is recommended to achieve this. If the flow never seems to stabilize, then an alternative site within that pressure zone may provide better results.
- Unknown System Issues: While boundary conditions are thought to be well known for this test, the static pressure is 3 psi higher than observed. A second hydrant test in this pressure zone at a different location may reveal what is causing the observed differences in pressure. In addition, an extended period calibration against SCADA with continuous HPR records at this location would provide excellent data to help uncover unknown issues for this zone.
- Equipment Error: While thought to be less likely, the difference in residual pressure could be explained by uncalibrated equipment. The flow from the test data would correlate with a high pressure drop in the system, however, that was not observed. Connectivity and headlosses were thoroughly checked within this zone to eliminate the model as the source of the simulated headloss.

5.3 Calibration Recommendations

The steady-state calibration results indicate the model provides accurate static pressure for most of the pressure zones. The District can confidently use the hydraulic model for planning purposes such as hydrant testing and potential pipe improvements. It is recommended that if the District needs to evaluate the system nearby Test 1 and Test 3 that additional hydrant tests be completed for the area of interest. In addition, it is recommended the District consider calibrating the model against extended period data. The benefits of an EPS calibration are discussed in more detail in Section 7.

If the District wishes to perform additional hydrant testing, following recommendations have been developed based on the model update and calibration effort along with Sedaru's experience with standard industry best-practices for hydraulic modeling:

- Determine the ground elevations (+/- 1-foot accuracy) for both flow and residual hydrants.
- Confirm pressure loggers used are properly calibrated and accurate. This can be achieved by comparing loggers against a calibrated digital or analog pressure gauge.

- Confirm a minimum of 5-minutes of stable flow is achieved. The total test would take • approximately 10-15 minutes where the first and last parts are opening and closing of fire hydrants. If a stable flow is never achieved, then the test should be relocated to nearby hydrants in the same pressure zone to get a more stable flow rate.
- Gather detailed SCADA data for tank levels, pump flow, pump status, and pump station discharge pressures for relevant facilities for each zone where fire hydrant tests are conducted. Because the hydrant test is only for 5-minutes, it is important to gather SCADA at the smallest time interval possible. In addition, record if any pumps turn on briefly to meet the hydrant flow as this is critical information the model needs to achieve an accurate simulation.

Master Planning Scenario Development 6

This section summarizes the assumptions and results of evaluating the system under current normal operating conditions. Modeled scenarios included Average Day Demand (ADD), Maximum Day Demand (MDD), and Peak Hour Demand (PHD) conditions. These scenarios can be used for master planning and analysis. Table 12 summarized the ADD, MDD, and PHD demands and peaking factors.

Scenario	Demand (gpm)	Peaking Factor
ADD	3,325	1
MDD	7,082	2.1*
PHD	11,421	1.6**
*MDD/ADD		

Table 12. Demands and Peaking Factors

**PHD/MDD

For each scenario, specific pumps had to be turned on to meet the demand. Our approach was to initially start with pumps that were commonly on during the steady-state calibration, and then added as-needed so that the system demand was met, and system pressures looked reasonable (i.e. at least above 40 psi and did not change too much from the ADD scenario).

ADD Scenario 6.1

This scenario has the following conditions:

- Demands: 3,325 gpm (4.79 mgd)
- Simulation: Steady-state •

Figure 3 and Figure 4 show junction pressure and pipeline velocity under ADD condition, respectively.

Observations are listed below:

Distribution system pressures were mostly above 40 psi. •

- Pressures less than 30 psi were reported at nodes near tanks or at suction side of the pump stations. These locations are not demand nodes and are common for junctions nearby facilities.
- Pressures between 30 to 40 psi were reported at high elevation areas within Lake Stevens zone on the south west side of intersection of 8th Street and 91st Avenue, along 4th Street west of 95th Avenue, and near intersection of 117th Avenue and 28th Street.
- Pipeline velocities were mostly less than 2 ft/s except for a pipeline segment along 28th Street.

Figure 3. Junction Pressure under ADD Condition

Figure 4. Pipeline Velocity under ADD Condition

6.2 MDD Scenario

This scenario has the following conditions:

- Demands: 7,082 gpm (10.2 mgd)
- **Peaking Factor**: MDD/ADD = 2.13
- Simulation: Steady-state

Figure 5 and Figure 6 show junction pressure and pipeline velocity under MDD condition, respectively.

Observations are listed below:

- Distribution system pressures were mostly above 40 psi.
- Pressures less than 30 psi were reported at nodes near tanks or at suction side of the pump stations. These locations are not demand nodes and are common for junctions nearby facilities.
- Pressures between 30 to 40 psi were reported at high elevation areas within Lake Stevens zone on the south west side of intersection of 8th Street and 91st Avenue, along 4th Street west of 95th Avenue, and near intersection of 117th Avenue and 28th Street.
- Pipeline velocities were all below 5 ft/s.

Figure 5. Junction Pressure under MDD Condition

Figure 6. Pipeline Velocity under MDD Condition

6.3 PHD Scenario

This scenario has the following conditions:

- **Demands**: 11,421 gpm (16.45 mgd)
- **Peaking Factor**: PHD/MDD = 1.61
- Simulation: Steady-state

Figure 7 and Figure 8 show junction pressure and pipeline velocity under PHD condition, respectively.

Observations are listed below:

- Distribution system pressures were mostly above 40 psi.
- Pressures less than 30 psi were reported at nodes near tanks or at suction side of the pump stations. These locations are not demand nodes and are common for junctions nearby facilities.
- Pressures between 30 to 40 psi were reported at high elevation areas within Lake Stevens zone along 147th Avenue, on the south west side of intersection of 8th Street and 91st Avenue, along 4th Street west of 95th Avenue, and near intersection of 117th Avenue and 28th Street.
- Pipeline velocities were all below 5 ft/s.

Figure 7. Junction Pressure under PHD Condition

Figure 8. Pipeline Velocity under PHD Condition

7 Recommendations

This section includes a list of recommended areas of improvement for the model which assume the District wishes to use the model as a planning level model for capital improvements, operational decisions, and potentially real-time operations. The following recommendations have been developed based on the model update and calibration effort along with engineering experience with standard industry best-practices for hydraulic modeling.

- Perform a system-wide EPS calibration with additional pressure monitoring for specific trouble spots observed from the steady-state calibration (near Test 1, 3, and possibly 6). An EPS calibration is essentially hundreds of steady-state calibrations completed for each time-step of the EPS period. Additional hydrant testing can also be simultaneously completed if the District wishes to "stress-test" specific areas. Some benefits from completing a system-wide EPS are listed below:
 - Explore and potentially resolve the issues observed in the steady-state calibration. An EPS calibration allows for a modeler to compare hydraulic trends over time, whereas the steady-state is just a snapshot. An EPS can reveal a temporary or regular but unknown contributing factors that are undetectable in a steady-state.
 - An EPS can help calibrate a model's operations. The District has a large number of pumps (13 pump stations and 40 pumps), where model results can vary greatly if the wrong pumps are on for a specific demand condition. The steady-state model currently assumes specific pumps are on to meet either ADD, MDD, or PHD; however, there are not established controls that help define what pumps turn on and off based on specific demand or operating conditions (i.e. tank levels). Any controls that exist in the model are from the legacy model and may be outdated.
 - An EPS model can help find system issues that a steady-state might not reveal. For example, a pipe may show high velocity due to a pump turning on or tank filling that might not show up for a steady-state ADD, MDD, or PHD scenario.
 - The District also has a large number of PRV station (38 total). An EPS model will help the District optimize PRV settings and operations by not only showing if a PRV is active during PHD, but if the PRVs balance flow between station and how long each station is active.
 - An EPS model is also a prerequisite for evaluating any of the following: evaluating water quality through water age or modeling disinfectant, provide a tool for operations to test "what-if" scenarios, finding energy cost savings through pumping improvements, and support staff with a real-time model that updates with live SCADA.
- Continue to improve the District's GIS. The objective should be to achieve a geometric network, where all links have an upstream and downstream node. There were still a large number of edits completed in order to achieve a working model. Each element should have a unique ID as well. In

addition, the District should continue to actively track valves status such as open, closed, or partially closed.

- Update the model's pump curve definitions that only have design points. The following data is preferred to develop pump curves in this order 1) recent pump test data (test should have at least 3 performance points, near shut off head, throttled flow, and full flow) 2) curve calculated from SCADA (SCADA must have flow, discharge pressure, and upstream pressure/tank levels) 3) manufacturer's curve. It is recommended that all pumps at least be defined by the manufacturer's curve, where the District can determine if a pump has deteriorated based on current performance.
- Obtain <1ft accurate elevation data for all pressure transmitters, pressure reducing or sustaining valves, flow control valves, pump centerlines, and tank elevation data. The current elevation data is based on a 5-ft elevation contour map provided by the District. All pressure data in the SCADA system should have a corresponding elevation that is within 1-foot accuracy for X, Y, and Z coordinates. This will provide the best correlation of flows and pressures between the model and actual operations.
- The District should investigate hydrant tests that did not match the model results. Erroneous data, diameter discrepancies, C-factor differences, connectivity issues, and operational changes should all be considered when evaluating this data.
- Update or verify the hydraulic model including, but not limited to, facility modifications, PRV settings, zone boundary valves, piping improvements, demands, etc. on a bi-yearly basis, at a minimum.
- Using SCADA available for wholesale connections during an EPS calibration would improve model performance (when used for calibration or a real-time model) and allow for operators to optimize operations when wholesale connections are active.

Appendix 7-2

Storage Analyses

THIS PAGE INTENTIONALLY LEFT BLANK

Г

Storage Tanks	s Hillcrest 1	Hillcrest 2	Walker Hills 1	Walker Hills 2	Granite Falls	Bosworth	Lake Roesiger 1
Reservoir Shape	Cylindrical	Cylindrical	Cylindrical	Cylindrical	Cylindrical	Cylindrical	Cylindrical
Zone Served	Lk Steven	Lk Steven	Lk Steven	Lk Steven	Granite	Lk Roesiger	Lk Roesiger
Diameter (Ft)	100) 100	70.7	70.7	′ 120	46	30
Overflow Elevation (Ft)	502	2 502	490	490) 726	811	811
Base Elevation (Ft)	450) 450	429	429	695	732	774
Storage Height (ft)	52	2 52	61	61	. 31	. 79	37
Reservoir Volume Per Foot Height (gal/ft)	58,748	58,748	29,365	29,365	84,597	12,431	5,287
Capacity (MG)	3.05	3.05	1.79	1.79	2.62	0.98	0.20
Usable Capacity (MG)	3.03	3.03	1.29	1.29	2.58	0.43	0.18
		Hillerect Tank			Granita Falls	Poquarth	Lk Poosiger Tank
Tank Name	e Hillcrest Tank 1	2	Walker Hill Tank 1	Walker Hill Tank 2	Tank 1	Tank	1
Operational Storage (OS)							
Pump Off Water Height (ft)	45	i 45	61	61	. 29	80	37
Pump On Water Height (ft)	4(40	56	56	j 22	. 70	27
Operational Storage (gal)	293,739	293,739	146,825	146,825	592,178	124,310	52,873
Operational Storage Height (ft)	Ę	5 5	5	5	5 7	10	10
Fire Suppression Storage (FSS)							
Largest Fire Flow Requirement (gpm)	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Largest Fire Flow Duration (min)	120	120	120	120	120	120	120
Fire Suppression Storage (gal)	360,000	360,000	360,000	360,000	360,000	360,000	360,000
Fire Suppression Height (ft)	12.3	12.3	-	-	4.3	46.9	46.9
Dead Storage (DS)							
Max Service Elevation	400) 400	400	400	600	730	730
Min Tank Elev for 20 psi	446	5 446	446	446	646	776	776
Min Tank Elev for 30 psi	469	9 469	469	469	669	799	799
Dead Storage (gal)	29,374	29,374	502,729	502,729	42,298	548,457	11,209
Dead Storage Height (ft)*	0.5	5 O.5	17.12	17.12	0.5	44.12	2.12
*Assumes 0.5' of dead storage for silt stop for Hillcrest & Granite Fo	alls						
Arlington Demand (ADD & MDD)	214	1,000	1,000				
	Plan Yr.	10-Yr	20-Yr				
	2020	2030	2040				
SS = (System MDD) x (2 days) (MG)	18.39	23.02	27.13	<< System Wide Dem	and/ERU value v	vithout Arlingtor	n Wholesale
SS = (System MDD) x (1 day) (MG)	9.19	11.51	13.56				
SS = (System ADD) x (2 day) (MG)	8.67	11.11	13.07				
Min. SS = 200 gallons/ERU * NERU (MG)	4.61	5.90	6.97				

ake Roesiger
2
Cylindrical
k Roesiger
30
811
774
37
5,287
0.20
0.18
Lk Roesiger
Tank 2
-
37
27
52.873
10
_
3,000
120
360.000
46.9
730
776
700
11 200
11,209 2 1 2
2.12

STORAGE ANALYSIS SUMMARY TABLE	WHOLE SYSTEM			
Description	Plan Yr. 2020	10-Yr 2030	20-Yr 2040	
Usable Storage (MG)				
Maximum Storage Capacity	13.69	13.69	13.69	All calcs adjusted to not include future tanks
Dead (Non-usable) Storage	1.68	1.68	1.68	
Total Usable Storage	12.01	12.01	12.01	
Required Storage (MG)				
Operational Storage	1.70	1.70	1.70	
Equalizing Storage	0.00	0.00	0.00	Use all sources except Cavaleros since it is not connected to all zones
Standby Storage (Emergency)	8.67	11.11	13.07	
Fire Flow Storage (Emergency)	0.36	0.36	0.36	Use largest fire flow requirement
Total Required Storage	10.37	12.81	14.78	
Surplus Storage	1.64	-0.80	-2.77	

STORAGE ANALYSIS - PLAN YEAR (2020)

Description	Lk Stevens Service Area	Granite Service Area	Lk Roesiger Service Area	Total System
Usable Storage (MG)				
Maximum Storage Capacity	9.69	2.62	1.37	13.69
Dead (Non-usable) Storage	1.06	0.04	0.57	1.68
Total Usable Storage	8.63	2.58	0.80	12.01
Required Storage (MG)				
Operational Storage	0.88	0.59	0.23	1.70
Equalizing Storage	0.00	0.00	0.00	0.00
Standby Storage (Emergency)	7.54	0.83	0.30	8.67
Fire Flow Storage (Emergency)	0.36	0.36	0.36	1.08
Total Required Storage	8.42	1.42	0.59	10.43
Surplus Storage	0.21	1.16	0.21	1.58

STORAGE ANALYSIS - TEN-YEAR (2030)

					Total System
	Lk Stevens	Granite	Lk Roesiger	Total	w/ CIPs
Description	Service Area	Service Area	Service Area	System	
Usable Storage (MG)					
Maximum Storage Capacity	9.69	2.62	1.37	13.69	
Dead (Non-usable) Storage	1.06	0.04	0.57	1.68	
Total Usable Storage	8.63	2.58	0.80	12.01	
Required Storage (MG)					
Operational Storage	0.88	0.59	0.23	1.70	
Equalizing Storage	0.00	0.16	0.00	0.16	
Standby Storage (Emergency)	10.21	0.31	0.58	11.11	
Fire Flow Storage (Emergency)	0.36	0.36	0.36	1.08	
Total Required Storage	11.09	1.11	0.81	13.02]
Surplus Storage	-2.46	1.47	-0.01	-1.01	

STORAGE ANALYSIS - TWENTY-YEAR (2040)

	Lk Stovens	Cronito		Tatal	Total System
Description	Service Area	Service Area	Service Area	System	w/ CIPS
Usable Storage (MG)					
Maximum Storage Capacity	9.69	2.62	1.37	13.69	
Dead (Non-usable) Storage	1.06	0.04	0.57	1.68	3.05
Total Usable Storage	8.63	2.58	0.80	12.01	18.17
Required Storage (MG)					7
Operational Storage	0.88	0.59	0.23	1.70	2.20
Equalizing Storage	0.00	0.42	0.00	0.42	
Standby Storage (Emergency)	10.30	1.98	0.79	13.07	
Fire Flow Storage (Emergency)	0.36	0.36	0.36	1.08	
Total Required Storage	11.18	3.00	1.02	15.20	
Surplus Storage	-2.55	-0.42	-0.22	-3.19	

<u>Storage</u>	
Reservoir Name	Tank 1
Reservoir Shape	Cylindrical
Diameter (Ft)	30
Overflow Elevation (Ft)	762
Base Elevation (Ft)	718
Storage Height (ft)	44
Reservoir Volume Per Foot Height (gal/ft)	5,287
Capacity (MG)	0.23

	Tank Name	Storm Lake Tank 1
	Zone	Storm Lake Ridge
Operational Storage (OS)		
Pump Off Water Height (ft)		43
Pump On Water Height (ft)		32
	Operational Storage (gal)	58,160
Operational Storage Height (ft)		11
Fire Suppression Storage (FSS)		
Largest Fire Flow Requirement (g	(pm)	1,000
Largest Fire Flow Duration (min)		120
F	Fire Suppression Storage (gal)	120,000
Fire Suppression Height (ft)		22.7
<u>Dead Storage (DS)</u>		
Max Service Elevation	_	670
Min Tank Elev for 20 psi		716
Min Tank Elev for 30 psi		739
	Dead Storage (gal)	5,287
Dead Storage Height (ft)*		1

*Assumes a min of 1.0'ft dead storage for pump protection

	Plan Yr.	10-Yr	20-Yr	
	2020	2030	2040	
SS = (System ADD) x (2 day) (MG)		0.11	0.12	0.14
Min. SS = 200 gallons/ERU * NERU (MG)		0.05	0.06	0.07

STORAGE ANALYSIS SUMMARY TABLE

	Plan Yr.	10-Yr	20-Yr	
Description	2020	2030	2040	
Usable Storage (MG)				
Maximum Storage Capacity	0.23	0.23	0.23	
Dead (Non-usable) Storage	0.005	0.005	0.005	
Total Usable Storage	0.23	0.23	0.23	
Required Storage (MG)				
Operational Storage	0.06	0.06	0.06	
Equalizing Storage	0.00	0.00	0.00	

LAKE STEVENS INTERGRATED

STORAGE ANALYSIS

Standby Storage (Emergency)	0.11	0.12	0.14
Fire Flow Storage (Emergency)	0.12	0.12	0.12
Total Required Storage	0.18	0.18	0.20
Surplus Storage	0.05	0.05	0.03

<u>Storage</u>		
Reservoir Name	Tank 1	Tank 2
Reservoir Shape	Cylindrical	Cylindrical
Diamter (Ft)	26	26
Overflow Elavation (Ft)	392	392
Base Elevation (Ft)	347	347
Storage Height (ft)	45	45
Reservoir Volume Per Foot Height (gal/ft)	3,971	3,971
Capacity (MG)	0.18	0.18

Tank Name	Tank 1	Tank 2	
Zone	392 PZ	392 PZ	
Operational Storage (OS)			
Pump Off Water Height (ft)	44	44	
Pump On Water Height (ft)	39	39	
Operational Storage (gal)	19,857	19,857	
Operational Storage Height (ft)	5	5	
Fire Suppression Storage (FSS)			
Largest Fire Flow Requirement (gpm)	500	500	
Largest Fire Flow Duration (min)	60	60	
Fire Suppression Storage (gal)	30,000	30,000	
Fire Suppression Height (ft)	7.6	7.6	
Dead Storage (DS)			
Max Service Elevation	300	300	
Min Tank Elev for 20 psi	346	346	
Min Tank Elev for 30 psi	369	369	
Dead Storage (gal)	1,986	1,986	
Dead Storage Height (ft)*	0.5	0.5	
*Assume min of 0.5 ft of dead storage to protect pumps.			
	Plan Yr	10-Yr 2	:0-Yı
	2020	2030 2	:040
SS = (System ADD) x (2 day) (MG)	0.18	0.21	

0.26

STORAGE ANALYSIS SUMMARY TABLE

	Plan Yr	10-Yr	20-Yr
Description	2020	2030	2040
Usable Storage (MG)			
Maximum Storage Capacity	0.36	0.36	0.36
Dead (Non-usable) Storage	0.004	0.004	0.004
Total Usable Storage	0.35	0.35	0.35
Required Storage (MG)			
Operational Storage	0.04	0.04	0.04
Equalizing Storage	0.00	0.00	0.00
Standby Storage (Emergency)	0.18	0.21	0.26

LAKE STEVENS INTERGRATED

STORAGE ANALYSIS

Fire Flow Storage (Emergency)	0.03	0.03	0.03
Total Required Storage	0.22	0.25	0.30
Surplus Storage	0.14	0.10	0.05

Storage	
Reservoir Name	Tank 1
Reservoir Shape	Cylindrical
Diameter (Ft)	30
Overflow Elevation (Ft)	170
Base Elevation (Ft)	150
Storage Height (ft)	20
Reservoir Volume Per Foot Height (gal/ft)	5,287
Capacity (MG)	0.11

	Tank Name	Tank 1
	Zone	280 PZ
Operational Storage (OS)		
Pump Off Water Height (ft)		17
Pump On Water Height (ft)		14
	Operational Storage (gal)	15,862
Operational Storage Height (ft)		3
Fire Suppression Storage (FSS)		
Largest Fire Flow Requirement (gpn	n)	500
Largest Fire Flow Duration (min)		60
Fire	Suppression Storage (gal)	30,000
Fire Suppression Height (ft)		5.7
<u>Dead Storage (DS)</u>		
Max Service Elevation		160
Min Tank Elev for 20 psi		206
Min Tank Elev for 30 psi		229
	Dead Storage (gal)	2,644
Dead Storage Height (ft)*		0.5

*Assume min of 0.5 ft of dead storage to protect pumps.

	Plan Yr.	10-Yr	20-Yr	
	2020	2030	2040	
SS = (System ADD) x (2 day) (MG)		0.05	0.05	0.05
Min. SS = 200 gallons/ERU * NERU (MG)		0.03	0.03	0.03

STORAGE ANALYSIS SUMMARY TABLE

	Plan Yr.	10-Yr	20-Yr
Description	2020	2030	2040
Usable Storage (MG)			
Maximum Storage Capacity	0.106	0.106	0.106
Dead (Non-usable) Storage	0.003	0.003	0.003
Total Usable Storage	0.103	0.103	0.103
Required Storage (MG)			
Operational Storage	0.016	0.016	0.016
Equalizing Storage	0.000	0.000	0.000

LAKE STEVENS INTERGRATED

STORAGE ANALYSIS

Standby Storage (Emergency)	0.051	0.052	0.053
Fire Flow Storage (Emergency)	0.030	0.030	0.030
Total Required Storage	0.067	0.068	0.069
Surplus Storage	0.036	0.035	0.035

Storage	
Reservoir Name	Tank 1
Reservoir Shape	Cylindrical
Diameter (Ft)	26
Overflow Elevation (Ft)	430
Base Elevation (Ft)	380
Storage Height (ft)	50
Reservoir Volume Per Foot Height (gal/ft)	3,971
Capacity (MG)	0.20

	Tank Name	Storm Lake Tank 1
	Zone	430 PZ
Operational Storage (OS)		
Pump Off Water Height (ft)		429
Pump On Water Height (ft)		427
0	Operational Storage (gal)	7,943
Operational Storage Height (ft)		2
Fire Suppression Storage (FSS)		
Largest Fire Flow Requirement (gpm)		500
Largest Fire Flow Duration (min)		60
Fire S	uppression Storage (gal)	30,000
Fire Suppression Height (ft)		7.6
Dead Storage (DS)		
Max Service Elevation		340
Min Tank Elev for 20 psi	-	386
Min Tank Elev for 30 psi		409
	Dead Storage (gal)	24,305
Dead Storage Height (ft)		6.12

	Plan Yr.	10-Yr	20-Yr	
	2020	2030	2040	
SS = (System ADD) x (2 day) (MG)		0.07	0.09	0.11
Min. SS = 200 gallons/ERU * NERU (MG)		0.04	0.05	0.06

STORAGE ANALYSIS SUMMARY TABLE

	Plan Yr.	10-Yr	20-Yr
Description	2020	2030	2040
Usable Storage (MG)			
Maximum Storage Capacity	0.20	0.20	0.20
Dead (Non-usable) Storage	0.02	0.02	0.02
Total Usable Storage	0.17	0.17	0.17
Required Storage (MG)			
Operational Storage	0.01	0.01	0.01
Equalizing Storage	0.01	0.01	0.02

LAKE STEVENS INTERGRATED

STORAGE ANALYSIS

Standby Storage (Emergency)	0.07	0.09	0.11
Fire Flow Storage (Emergency)	0.03	0.03	0.03
Total Required Storage	0.09	0.11	0.14
Surplus Storage	0.08	0.06	0.04

2020 Appr. Percent of System Demand per	100.00%	29.82%	18.41%		0.57%	34.24%	2.83%	14.14%	
Plan Year (2020)	TOTAL	535 PZ	450 PZ	370 PZ		350 PZ	450 PZ	232 PZ	Blue outline:
System ADD (gpm)	132.3	39	24		1	45	4	19	Warm Beach Zones
System MDD (gpm)	345.1	103	64		2	118	10	49	(access to
System PHD (gpm)	1,020.9	304	188		6	350	29	144	Warm Beach
# of ERUs (including Non-Rev & DSL	1,037.2	309	191		6	355	29	147	tank storage)
Ten-Year (2030)									
System ADD (gpm)	150.7	45	28		1	52	4	21	
System MDD (gpm)	393.6	117	72		2	135	11	56	
System PHD (gpm)	1,158.3	345	213		7	397	33	164	
# of ERUs (including Non-Rev & DSL	1,189.3	355	219		7	407	34	168	
Twenty-Year (2040)									
System ADD (gpm)	171.8	51	32		1	59	5	24	
System MDD (gpm)	449.2	134	83		3	154	13	64	
System PHD (gpm)	1,315.3	392	242		7	450	37	186	
# of ERUs (including Non-Rev & DSL	1,364.8	407	251		8	467	39	193	

<u>Sources</u>	Kayak Well 1	Kayak Well 2	Kayak Well 3	WB Well 2	WB Well 3R		WB Well 4	WB Martha Lake	WB Well 1	WB Well 3	WB Well 5
Source Type	well	well	well	well							
Zone Served	535 PZ	535 PZ	535 PZ	350 PZ	350 I	PZ	450 PZ	350 PZ	350 PZ	350 PZ	350 PZ
Largest Pump (QL) (GPM)											
Total Pumping Capacity (Qs) (gpm)	300	250	0		50	0	170	0	0	0	0
Water Right Qi (gpm)	70	30	00		50		200				
Water Right Qa (ac-ft)	72	15	56				135				

Pump Stations	WB Well 4 BPS
Zone Served	450 PZ
Number of Pumps	2
Largest Pump (QL) (GPM)	65
Total Pumping Capacity (Qs) (gpm)	130

emergency only

			_			
Storage		_	1			7
Reservoir Name	WB Tank 1	Kayak Tank 1			Future Tank	
Reservoir Shape	Cylindrical	Cylindrical			Cylindrical	
Diameter (Ft)	32.7	26			34	ŧ
Overflow Elevation (Ft)	350	548.5			548.5	5
Base Elevation (Ft)	318	474			474	ŧ
Storage Height (ft)	32	74.5			74.5	5
Reservoir Volume Per Foot Height	6,282	3,971			6,791	
Capacity (MG)	0.201	0.296			0.51	
Usable Capacity (MG)	0.198	0.208			0.356	
Tank Name	WB Tank 1	Kayak Tank 1			Future Tank	
Zone	450 PZ	535 PZ			535 PZ	
Operational Storage (OS)						
Pump Off Water Height (ft)	29.2	72			72	2
Pump On Water Height (ft)	25	65			65	5
Operational Storage (gal)	26,384	27,799			47,539	
Operational Storage Height (ft)	4.2	7	,		7	/
Fire Suppression Storage (FSS)						
Largest Fire Flow Requirement (gp	n 500	500			500	
Largest Fire Flow Duration (min)	120	120			120	
Fire Suppression Storage (gal)	60,000	60,000			60,000	
Fire Suppression Height (ft)	9.6	15.1			8.8	
<u>Dead Storage (DS)</u>						
Max Service Elevation	80	450			450)
Min Tank Elev for 20 psi	126	496			496	5
Min Tank Elev for 30 psi	149	519			519)
Dead Storage (gal)	3,141	87,846			150,222	
Dead Storage Height (ft)	0.5	22.12			22.12	2
				Equalizing	0.11	<u>ן</u>
	Plan Yr.	10-Yr	20-Yr		Plan Yr.	1
	2020	2030	2040		2020	;
SS = (System ADD) x (2 day) (MG)	0.20	0.22		0.25	0.19	
S = 200 gallons/ERU * NERU (MG)	0.11	0.12		0.14 = 200 gallons/ERU * NERU (MG)	0.10	

STORAGE ANALYSIS SUMMARY TABLE: EXISTING WARM BEACH TANK

STORAGE ANALYSIS SUMMARY TABLE: EXISTING KAYAK TANK

	Plan Yr.	10-Yr	20-Yr		Plan Yr.	10-Yr	20-Yr
Description	2020	2030	2040	Description	2020	2030	2040
Usable Storage (MG)				Usable Storage (MG)			
Maximum Storage Capacity	0.201	0.201	0.201	Maximum Storage Capacity	0.30	0.30	0.30
Dead (Non-usable) Storage	0.003	0.003	0.003	Dead (Non-usable) Storage	0.09	0.09	0.09
Total Usable Storage	0.198	0.198	0.198	Total Usable Storage	0.21	0.21	0.21
Required Storage (MG)			Required Storage (MG)				

20-Yr 2040

Operational Storage	0.03	0.03	0.03	Operational Storage	0.03	0.03	0.03
Equalizing Storage	0.05	0.06	0.07	Equalizing Storage	0.02	0.03	0.04
Standby Storage (Emergency)*	0.20	0.22	0.25	Standby Storage (Emergency)	0.19	0.21	0.24
Fire Flow Storage (Emergency)	0.06	0.06	0.06	Fire Flow Storage (Emergency)	0.06	0.06	0.06
Total Required Storage	0.27	0.30	0.35	Total Required Storage	0.23	0.27	0.31
Surplus Storage	-0.07	-0.11	-0.15	Surplus Storage	-0.02	-0.06	-0.10

THIS PAGE INTENTIONALLY LEFT BLANK

1102 BROADWAY PLAZA, SUITE #401 TACOMA, WA 98402 www.murraysmith.us