Youngs Creek Hydroelectric Project (FERC No. P-10359)

Resident Trout Monitoring Plan Annual Report

2010 Survey and Results of Pre-Project Monitoring

September 2010

Overview

The Public Utility District No. 1 of Snohomish County (PUD) has completed the final year of pre-Project baseline resident trout monitoring for the Youngs Creek Hydroelectric Project (FERC No. P-10359) (Project)¹. This brief report summarizes the effort and the associated statistical inference tests [Tests 1-5] outlined in the Resident Trout Monitoring Plan (Plan) (Beak Consultants Inc. 1993)². The PUD will continue to monitor the trout population after Project start up and submit annual monitoring reports to the Washington Department of Fish and Wildlife and US Fish and Wildlife Service for review as required by the Plan. Consultation documentation on this report is included in Appendix A.

As a summary, the Monitoring Plan is designed to:

- (1) Assess changes in resident trout population using annual counts of the number of fish in 10 pools as an *Index* of trout abundance;
- (2) Ensure Project-related changes in streamflow do not prevent the trout population from rebounding following a decline; and
- (3) Use Least-Squared Regression 'Trend Analysis' to assess changes in trout abundance over time.

Monitoring the trout population will assess change in the population index, regardless of the cause of the changes. The surveys will monitor two types of population changes:

- (1) Statistically significant trends (3 or more years of surveys); and
- (2) Sudden catastrophic declines.

2010 Data

The 2010 fish abundance information (see Tables 1 and 2, Figures 1 and 2) indicated this year's number of observed fish was slightly greater than normal, averaging 10.5 fish per pool over a series of 10 pools. This number is approximately 15 percent more than the baseline average of 9.1 fish per pool. However, the 2010 observed abundance lies within one standard deviation [9.1 \pm 1.6 fish/pool] of the annual survey mean over the baseline period.

¹ Based on current construction schedule for Project to start-up in Spring 2011. If the Project is delayed to Fall 2011, an additional pre-Project survey will be conducted in August 2011.

² The Trout Monitoring Plan was approved by the FERC in its Order Approving Resident Trout Monitoring Plan issued June 8, 1995 [19950614-0065].

urveyor	s: <u>Ron</u>	Campbel	I and M1k	e Gagner	7Keith BI	nkley and	Larry Lov	we				Date:	8/12/10			Time:	<u>0945 - 13</u>	<u>330 hrs</u>	
Vater Te	emp. Sta	rt:	14.0C		Finish:	15.0C				Underwa	ter Visibi	lity:	<u>20 ft</u>						
Pool Unit	Length	Width	Area	Max Depth	Max. Control	Residual Depth	Control				Nu	nber of Ti	rout by Size Class (mm)					Total Trout	Trout Density
#	(ft)	(ft)	(m2)	(ft)	Depth			Species	0-30	30-60	60-90	90-120	120-150	150-180	180-210	210-240	>240	> 60 mm	-
1	39.0	18.5	67.0	1.6	0.30	1.30	Boulder	RBT										0	0.000
2	45.0	18.0	75.2	2.6	0.40	2.20	Boulder	RBT										0	0.000
3a	34.0	16.0	50.5	2.6	0.20	2.40	Boulder	RBT				9	6	8			 	23	0.455
								BRK					1	1				2	0.040
4	27.0	13.0	32.6	2.6	0.30	2.30	Boulder	RBT				2	2					4	0.123
5	54.0	16.0	80.3	2.6	0.30	2.30	Bedrock	RBT		2		1	1					2	0.025
6	31.0	15.0	43.2	3.0	0.30	2.70	Boulder	RBT					3	1				4	0.093
7	38.0	19.0	67.1	4.5	0.20	4.30	Bedrock	RBT				1	1	1	1			4	0.060
8	68.0	17.0	107.4	3.8	0.35	3.45	Bedrock	RBT				4	2	2	1			9	0.084
9	27.0	10.0	25.1	4.0	0.40	3.60	Boulder	RBT				6	5	1	1			13	0.518
10	120.0	14.0	156.1	3.5	0.30	3.20	Cobble	RBT		5	1	19	18	3	2	1		44	0.282
Subtotal								RBT BRK		7	1	42	38 1	16 1	5	1		103 2	
Total	48.3	15.7	70.4	3.1	0.3	2.8	Boulder		0	7	1	42	39	17	5	1	0	105	0.153
	Species Co	ode: RBT :	= Rainbow	trout; BRK	= Brook tro	out													

Table 2: Alternate Pool Data 2008, 2009 and 2010

Surveyors: <u>Ron Campbell and Mike Gagner</u>									Date:				Time:					
Water Te	emp. Sta	rt:			Finish:				Underwa	ter Visibil	itv:							
viuter re	inpi su								Chierwa		1031							
Pool				Max	Max.	Residual												Trout
Unit	Length	Width	Area	Depth	Control	Depth	Control		Number of Rainbow Trout by Size Class (mm)								Total	Density
#	(ft)	(ft)	(m2)	(ft)	Depth	(ft)	Feature	0-30	30-60	60-90	90-120	120-150	150-180	180-210	210-240	>240	Trout	(f/m2)
Alternate F	Pool																	
7a-2008	52	22	106.3	3.0	0.6	2.40	Boulder				4	3	1	1			9	0.085
7a-2009	58	18	97.0	3.2	0.5	2.70	Boulder		11		6	2	3	2			13	0.134
7a-2010	55	16	81.7	3.0	0.4	2.60	LWD/Boulder					2		1			3	0.037

The 2010 fish abundance results are somewhat skewed to the high side as a result of two pools with extraordinary large numbers of observed fish. Pools #3 and #10 had more than 25 fish per pool, each. Like last year, the two lowermost pools remained devoid of fish likely as a result of seasonal flow cessation in the alluvial portion of the study reach. Although no live fish were present, it was interesting to note Pool #2 had six dead trout in the deepest portion of the pool. Based on the condition of the fish, surveyors estimated the mortalities likely occurred within the last two or three days.

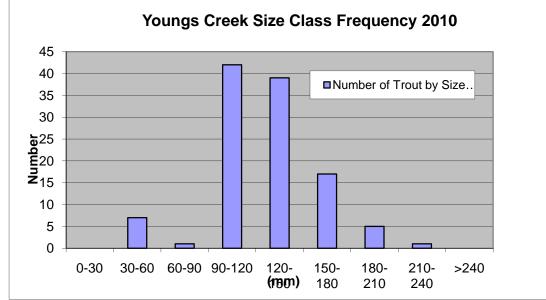


Figure 1: Number of Trout by Size Class (mm)

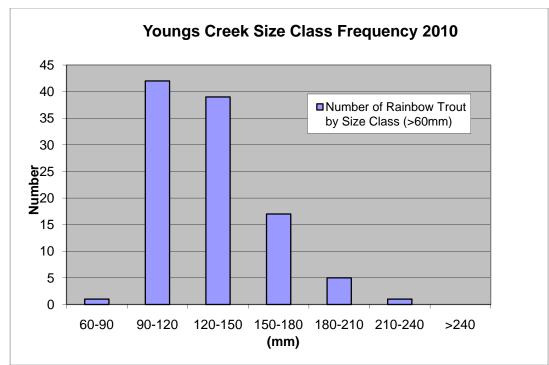


Figure 2: Number of Rainbow Trout by Size Class (>60mm)

One observation this year is the first noted presence of brook trout (see Figure 3) in the monitoring reach. Two dead and two live brook trout (120 - 160 mm) were observed in Pools #2 and #3, respectively, downstream of the inter-gorge slide. Brook trout represented less than 2 percent of the species abundance for the entire monitoring reach.

Figure 3: Underwater picture of brook trout in Pool #3.

Surveyors noted very few young-of-the-year trout (subyearling fry less than 60 mm in length) during this year's survey as shown in the size class frequency chart (Figure 1). This observation suggests juvenile recruitment to the study area next year may be low. However, the current abundance of yearling fish should bode well for the adult population.

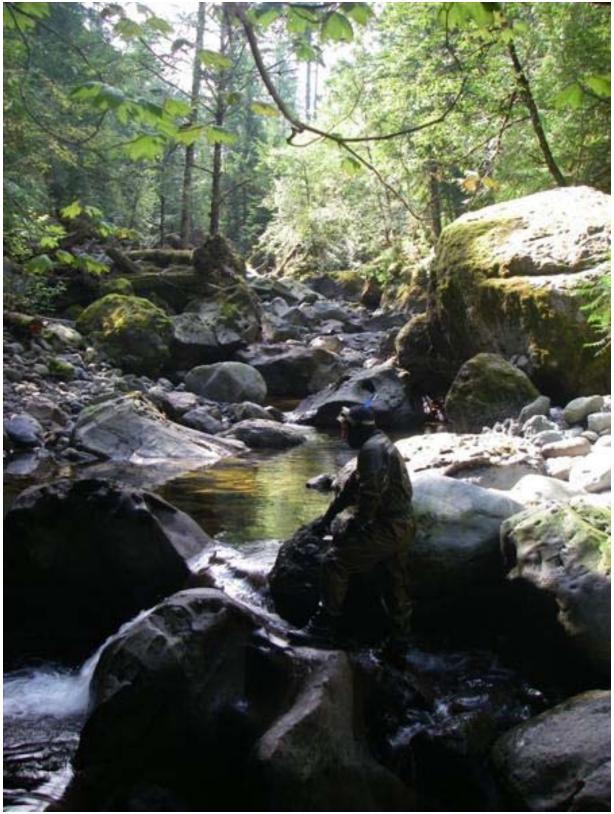


Figure 4: Longitudinal view of the creek include Pool #5, looking upstream.

Figure 5: Longitudinal view at Pool #8, looking downstream.

Also to note, on August 19, 2010, portions of Youngs Creek dried up completely (see Figures 6-17 depicting the creek bed in pools 1 through 4). Since this dry event occurred after the 2010 survey fieldwork, the results in the tables and figures of this report represent the collected survey data.

Figure 6: Monitoring Site – Dry

Figure 7: Monitoring Site – Dry

Figure 8: Monitoring Site – Dry

Figure 9: Monitoring Site – Dry

Figure 10: Monitoring Site – Dry

Figure 11: Monitoring Site – Dry

Figure 12: Monitoring Site – Dry

Figure 13: Monitoring Site – Dry

Figure 14: Monitoring Site – Dry

Figure 15: Monitoring Site – Dry

Figure 16: Monitoring Site – Dry

Figure 17: Monitoring Site – Dry

Pre-Project Baseline

A catastrophic decline during the first year of operation has been defined for the Youngs Creek Monitoring Plan as a 75 percent decline in the mean pre-Project population index from all surveys [Test 1]. *'Mean pre-project population index from all surveys*' includes all seven monitoring surveys conducted between 1991 and 2010 using an annual assessment of 10 pools (see attached worksheet 1). By means of an example, the pre-Project data collected to date [in round numbers] ranged between 6 and 11 fish per pool and currently averages 9.1 fish per pool. Thus, one would need to record a population index following the first year of operation of less than 2.3 fish per pool to be categorized as a catastrophic event. For reference, natural population index declines reported in 1994 (6 fish per pool) and 2009 (8 fish per pool), were 32% and 11%, respectively of the mean pre-project population index. Neither decline, had they occurred post-Project operation, would have been regarded as a catastrophic event under the Monitoring Plan.

Catastrophic declines of 75 percent or more in subsequent years of operation [Years 2-5] are compared to mean population data from the period of operation rather than the pre-Project baseline period [Test 2].

Adjustments in the minimum in-stream flow regime, in accordance with the current Memorandum of Understanding among PUD, Washington Department of Fish and Wildlife and Washington Department of Ecology dated June 12, 2009, will only be implemented if:

- (1) the trout population index fails to rebound to pre-project levels following a catastrophic decline in Year 1 of operation,
- (2) there are two successive catastrophic population declines during 5 post-operational years, or
- (3) the population index undergoes a steady, statistically significant decline over a period of 5 post-operational years.

Monitoring could end following 3 years of post-operational surveys if the minimum in-stream flow releases are considered adequate to protect the fishery resource by means of the following Test 3:

• the trout population index does not exhibit a statistically significant decline in 3 years of Project operation.

Monitoring could continue past 5 years of post-operational surveys as a factor of either: (a) determining if a near-term catastrophic decline has an opportunity to rebound [Test 5]; or (b) a longer-term statistically significant decline occurs [Test 4] resulting in resetting the minimum instream flow regime.

Table 3: Statistical Trend Analysis

		Early 1990s Baseline Late				2000s Baseline		Slope ^{1/}	Project Operations								
ool #	1991	1992	1993	1994	2008	2009	2010	(m)	2011	2012	2013	2014	2015		4-yr Slope ^{1/}	5-yr Slope	
1	3	4	7	1	3	0	0	-0.2	1	2	6	7	3	2.5	2.2	0.9	
2	14	7	7	5	5	0	0	-0.4	2	3	6	7	3	2.0	1.8	0.6	
3	11	10	7	6	9	0	25	0.2	3	4	6	7	3	1.5	1.4	0.3	
4	2	2	4	5	2	1	4	0.0	4	5	6	7	3	1.0	1.0	0.0	
5	2	4	2	1	5	5	2	0.1	5	6	6	7	3	0.5	0.6	-0.3	
6	23	25	20	13	4	4	4	-1.0	6	7	6	7	3	0.0	0.2	-0.6	
7	2	3	7	6	13	3	4	0.1	7	8	6	7	3	-0.5	-0.2	-0.9	
8	31	26	24	16	27	14	9	-0.5	8	9	6	7	3	-1.0	-0.6	-1.2	
9	4	12	10	8	7	4	13	0.0	9	10	6	7	3	-1.5	-1.0	-1.5	
10	0	1	3	1	36	50	44	2.5	10	1	6	7	3	-2.0	-0.4	-0.8	
) = Slop	be (m) of t	he least squ	ares regres	sion line													
(I) =	9.2	9.4	9.1	6.2	11.1	8.1	10.5	0.07	5.5	5.5	6.0	7.0	3.0				
$B_p =$	9.2	9.3	9.2	8.5	9.0	8.9	9.1										
A _p =									5.5	5.5	5.7	6.0	5.4				
$\sum m_i =$			-0.05	-0.93	0.14	0.05	0.07	0.07						0.25	0.50	-0.35	
S _m = 3	Standard	deviation of	the pool rec	pression slo	pes			0.94						1.51	1.08	0.79	
	pools =		5.47723			8.36660											
	•	deviation us					10.5										
S 9	Standard	deviation us	ing annual i	nool counte			1.6										

	5 CONTIN	r Catastrophic Decline	using Pre-Project Dat	a			Test 4:	Negative	Populati	ion Trends	[Preceedir	ng 5 Years]							
	Where:	(I) = average number of	f fish/pool for current yea	ar.				Test co	ompares tl	he the annu	al average o	f the regression	n slopes of nui	mber of fish pe	er pool				
		(B _p) = average number	of fish/pool observed pre	e-project cor	nditions = 9.1 fish/	looc													
								Negativ	ve decreas	se = regres	sion slope le	ss than zero (F	P = 0.10)						
	Catastrop	ohe: (I ₂₀₁₁ /Bp ₂₀₁₀) < 0.25	= < 2.3 fish/pool																
	· · ·		· · · ·					Use St	udents' t-t	est; same	as for Test 3	, only looking f	or significant o	decreases.					
est 2:	Subsequ	ent Year Project Opera	ational Catastrophic D	ecline usin	g Post-Project D	ita													
	· ·		· · · ·					Determ	nine critica	al t value us	ing a table o	f t-distributions	with DF = (#	of pools)-1, an	d a 1-taile	d P = 0.10.			
	Where:	(I) = average number of	f fish/pool for any given y	/ear.							_								
		(Ap) = average number	r of fish/pool observed pri	ior to the cu	rrent survey.			If the a	bsolute va	lue of nega	tive t-calcula	ated is greater	than t-critical,	a significant of	difference e	exists and it	can be cond	cluded that a	a significant
								negativ	e populati	on trend ha	s developed.								
	Catastrop	ohe: (I ₂₀₁₂ /Ap ₂₀₁₁) < 0.25	; or for any combination	of current y	ear and prior post-	project mean													
							Test 5:	Compari	son of 1-y	r Catasrop	he with Pro	e-Project Base	eline Populat	tion					
est 3:	Positive	Population Trends (Op	erational Years 3 and	4)															
										•		astrophic Declir			urred.				
	The test c	compares the average of	the slopes of the regres	sion line for	each pool			Compa	ares post-F	Project pop	ulation numb	ers with pre-Pr	oject baseline						
	Positive in	ncrease = regression slo	pe greater than zero (P	= 0.10).					•	-	•	an pre-Project	mean of 9.1 fis	sh/pool, the po	opulation is	s considered	to have		
	0				(00 to :			reboun	ded from t	he earlier c	atastrophic	decline.							
		'T-test is subsequently u	• •	pe averaged	tor 30 or 40 pools			14/1											
	dependinç	g upon the year tested ()	ear 3 or 4).					Where	.,	-	•	ool for current			<u> </u>				ļ
									· ·			/pool observed							
	For each	pool use linear regression				(S _b) = standard deviation of pre-project population using individual pool counts = 10.5 fish/pool													
	Where:	Y = number of fish								S _b is the	within pool r	mean-square ei	rror determined	d using a one-	way ANO∖	/A with DF =	= 60 [10 poo	ls (7 years -	1)].
		X = Year																	
		m = slope coefficient for	or each pool					Single-	sample S	tudents' T-t	est is subse	quently used to	compare the	mean pre-pro	ject popula	ation (Bp) of	9.1 fish/poo	I versus the	
		S _m = Standard Deviation										urrent year (I).					· ·		
			· · · · · ·					J											
	Use a sin	gle sample t-test for the	mean slope versus a slo	ope of zero.				Determ	nine critica	al t value us	ing a table o	f t-distributions	with DF = (#	of pools) *(n-1), and a 1-	tailed $P = 0$.	10.		
											-								
		$t = [(\sum m_i) / \# otion f(\sum m_i)) / \# otion f(\sum m_i) / \# otion f(\sum m_$	f pools] - 0					If t-cale	culated is	greater tha	n t-critical, a	a significant diff	erence exists	and it can be	concluded	that the pop	oulation		
		S _m / √# of p						has no	has not rebounded to pre-project levels.										
									rebound										
	Determine	e critical t value using a t	table of t-distributions wi	th DF - (# c	of pools)-1 and a 1	-tailed P = 0	10												
	Determine	e entical t value using a l		(11 D) = (# C			. 10.		_										
	If t-calcul	lated is greater than t-cri	tical. a significant differe	ence exists a	and it can be conc	uded that a s	significant	_										_	
							0												
		Example	Tests 1 & 2 using 1994	4/2009 data	as potential dec	ines													
				0.89			61												
est 1			0.68	0.00		0.	<u> </u>												++
Test 1:	:		0.68 FALSE	FALSE				1.00	1.09	1.24	0.50								++
			FALSE	FALSE							0.00					1	1	1	
				FALSE				1.00	1.00	1.27									
est2:	2 2		FALSE			50		1.00	1.00	1.21		0.522	1 /6/			Populti t d	alculated		
est2:	2 2	Exp. Test	FALSE t 3 using Baseline data		0.6			1.00	1.00			0.522	1.464			Result; t-o		Distribution	
Test 2: Test 3:	:	Exp. Test	FALSE		0.6			1.00	1.00			0.522 1.311	1.464 1.304	1 400		Critical Va	alue of the t	-Distribution	ı; t-critical
¯est2: ¯est3:	:	Exp. Test Critical Va	FALSE t 3 using Baseline data alue of the t-Distribution	=				1.00	1.00					-1.400	3	Critical Va Result; t-c	alue of the t calculated		
۲est 2: ۲est 3: ۲est 4:		Exp. Test Critical Va	FALSE t 3 using Baseline data alue of the t-Distribution alue of the t-Distribution		1.2									-1.400 1.299		Critical Va Result; t-c Critical Va	alue of the t calculated alue of the t	-Distribution	
Γest2: Γest3: Γest4:		Exp. Test Critical Va Critical Va Example	FALSE t 3 using Baseline data alue of the t-Distribution alue of the t-Distribution Test 5 using 2010 data		-1.051			2.872	2.471	1.670	4.874					Critical Va Result; t-c Critical Va Result; t-c	alue of the t calculated alue of the t calculated	-Distribution	n; t-critical
Fest 1: Fest 2: Fest 3: Fest 4: Fest 5:		Exp. Test Critical Va Critical Va Example	FALSE t 3 using Baseline data alue of the t-Distribution alue of the t-Distribution		1.2											Critical Va Result; t-c Critical Va Result; t-c	alue of the t calculated alue of the t calculated		n; t-critical

As shown in the attached Excel file (Table 3), the slope of the fish abundance data per individual pool (1) is variable. Some pools show increasing trends while others show decreasing trends. During both 2009 and 2010, the streamflow in the lower alluvial portion of the monitoring reach, specifically pools 1 through 4, went subsurface for a two to four week period during the summer. The overall summary for all pools shows the most recent slope coefficient of the least-square regression line (m) is averaging 7 percent higher abundance than data collected early in the baseline period (Figure 18). However, the current trout abundance estimates do not show a statistically significant positive trend in the annual survey data from 1991 to 2010. This result implies the Youngs Creek trout population index has been relatively stable over the baseline period.

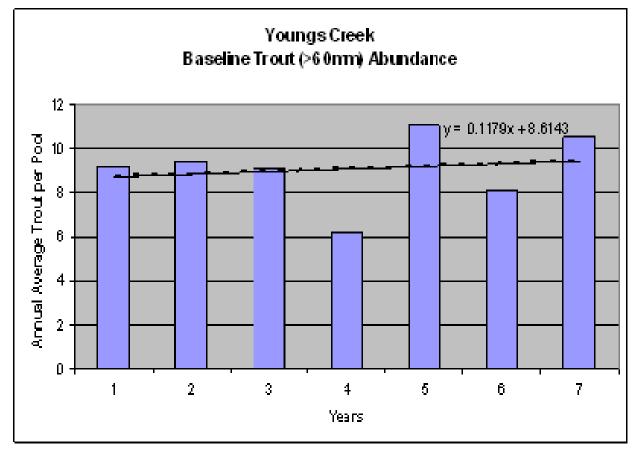


Figure 18. Youngs Creek average annual baseline trout abundance index and least-squared regression trend line (1991 – 2010).

Please contact Keith Binkley (PUD biologist) at <u>KMBinkley@snopud.com</u> if you have any questions about the data collected to date and how they apply to the Resident Trout Monitoring Plan.

Appendix A

Consultation Documentation

Presler, Dawn

From:	Presler, Dawn
Sent:	Monday, October 04, 2010 2:14 PM
To:	'Applegate, Brock A (DFW)'; 'Tim_Romanski@fws.gov'
Cc:	Binkley, Keith
Subject:	Youngs Creek (P10359) - 2010 data/pre-project resident trout monitoring report
Attachments:	P10359_ResidentTrout2010.pdf; Resident Trout Monitoring Plan_Beak_Nov1993.pdf

Hi Tim and Brock,

Attached is the Youngs Creek Resident Trout Monitoring Plan annual survey report detailing the 2010 data and Pre-Project summary data. Please take the next 30 days to review and provide comments, if any, back to me and Keith by November 3. We can set up a quick conference call to go over the data prior to the comments due date if you would like – just let me know if you are interested in a meeting. Thanks!

(I've also attached the FERC-approved Resident Trout Monitoring Plan for background.)

Dawn Presler Relicensing Specialist Jackson Hydro Project

Snohomish County PUD No. 1 PO Box 1107 Everett, WA 98206-1107 Phone: 425-783-1709

Presler, Dawn

From:	Applegate, Brock A (DFW) [Brock.Applegate@dfw.wa.gov]
Sent:	Friday, November 05, 2010 9:36 AM
То:	Presler, Dawn; Tim_Romanski@fws.gov
Cc:	Binkley, Keith; Whitney, Jennifer L (DFW); Hoffmann, Annette (DFW); Everitt, Bob (DFW);
	Hunter, Mark A (DFW); Brock, David W (DFW); Bails, Jamie L (DFW)
Subject:	Youngs Creek Hydroproject (P10359) - 2010 data/pre-project resident trout monitoring
	annual report for 2010 comment letter
Attachments:	Resident Trout Monitoring Plan 2010 Annual Report comment letter.pdf

Hi Dawn and Keith, Just a quick note stating that we don't have any comments for the annual report. Thanks for sending it. Please see attached letter stating that we have no comments.

Sincerely, Brock

Brock Applegate FERC Hydropower Mitigation Biologist Washington Department of Fish and Wildlife P.O. Box 1100 111 Sherman St. (physical address) La Conner, WA 98257-9612

(360) 466-4345 x254 (509) 607-9957 (cell) (360) 466-0515 (fax)

From: Presler, Dawn [mailto:DJPresler@SNOPUD.com]
Sent: Monday, October 04, 2010 2:14 PM
To: Applegate, Brock A (DFW); 'Tim_Romanski@fws.gov'
Cc: Binkley, Keith
Subject: Youngs Creek (P10359) - 2010 data/pre-project resident trout monitoring report

Hi Tim and Brock,

Attached is the Youngs Creek Resident Trout Monitoring Plan annual survey report detailing the 2010 data and Pre-Project summary data. Please take the next 30 days to review and provide comments, if any, back to me and Keith by November 3. We can set up a quick conference call to go over the data prior to the comments due date if you would like – just let me know if you are interested in a meeting. Thanks!

(I've also attached the FERC-approved Resident Trout Monitoring Plan for background.)

Dawn Presler Relicensing Specialist Jackson Hydro Project

Snohomish County PUD No. 1 PO Box 1107 Everett, WA 98206-1107 Phone: 425-783-1709

State of Washington **Department of Fish and Wildlife** P.O. Box 1100, 111 Sherman St. (physical address), La Conner, Washington 98257-9612

November 5, 2010

Public Utility District No. 1 of Snohomish County Dawn Presler, Relicensing Specialist PO Box 1107 Everett, WA 98206-1107

Subject: Youngs Creek Hydroelectric Project (FERC No. P-10359) — Resident Trout Monitoring Plan Annual Report, 2010 Survey and Results of Pre-Project Monitoring

Dear Ms. Presler:

The Washington Department of Fish and Wildlife (WDFW) has reviewed the Resident Trout Monitoring Plan Annual Report for 2010. We have no comments. WDFW has participated in continuous consultation with Public Utility District No. 1 of Snohomish County (PUD). WDFW appreciates the report on the PUD's survey activities and results. We look forward to further collaboration with the PUD and other Aquatic Resource Committee (ARC) members.

Thank you for sending us the annual report for our review. If you have any questions or need more information or clarification from the WDFW, please feel free to call me at (360) 466-4345 x254.

Sincerely,

Binch a. Oggele

Brock Applegate Fish and Wildlife Biologist

Cc: Jamie Bails, WDFW Mill Creek David Brock, WDFW Mill Creek Bob Everitt, WDFW Mill Creek Annette Hoffman, WDFW Mill Creek Mark Hunter, WDFW Olympia Jennifer Whitney, WDFW Mill Creek