APPENDIX C

Habitat Suitability Criteria (HSC)

APPENDIX C1

Proposed Habitat Suitability Criteria (HSC) Curves for Application in Habitat-Flow Modeling for the Sultan River Instream Flow Study – RSP 3, June 5, 2008

- DRAFT -

Proposed Habitat Suitability Criteria (HSC) Curves For Application in Habitat – Flow Modeling For the Sultan River Instream Flow Study – RSP 3

Prepared for:

Public Utility District No. 1 of Snohomish County and City of Everett

Prepared by:

R2 Resource Consultants, Inc. 15250 N.E. 95th Street Redmond, Washington 98052

June 5, 2008

CONTENTS

1.	INTRODUCTION	1
2.	OBJECTIVES	3
3.	DESCRIPTION OF STUDY AREA	3
4.	DESCRIPTION OF STUDY SITES	5
5.	METHODS	5
	5.1 Spawning Surveys	5
	5.2 SNORKEL SURVEYS – JUVENILE AND ADULT REARING	6
	5.3 FLOW CONDITIONS	10
	5.4 DATA ANALYSIS	10
6.	RESULTS	11
	6.1 CHINOOK SALMON HSC SURVEYS	11
	6.2 Steelhead Trout HSC Surveys	11
	6.3 JUVENILE/FRY SALMONID HSC SNORKEL SURVEYS	13
	6.4 Coho Salmon - Juvenile	17
	6.5 Steelhead/Rainbow Trout - Fry	17
7.	RECOMMENDED HSC CURVES	17
	7.1 Steelhead Trout Spawning	22
	7.2 CHINOOK SALMON SPAWNING	23
	7.3 Coho Juvenile	24
	7.4 Steelhead/Rainbow Trout Fry	
8.	TECHNICAL REVIEW MEETING	25
9.	REFERENCES	
AP	PPENDIX A: Sultan River HSC Curve Observation Data: 2006 – 2008	

APPENDIX B:	Frequency Distribution of HSC Curve Data Collected on the Sultan River,
	Washington

APPENDIX C: Habitat Suitability Criteria

FIGURES

Figure 1.	Jackson Hydroelectric Project - Sultan River operational reach breaks and locations of USGS stream flow monitoring stations.	4
Figure 2.	Visibility conditions were assessed using a secchi disk prior to conducting microhabitat snorkel surveys in the Sultan River, Washington	7
Figure 3.	Photographs of snorkelers making fish observations in Reach 2 of the Sultan River, Washington.	9
Figure 4.	Average daily flows (2006 and 2007) downstream of the powerhouse (top) and diversion dam (bottom) during Chinook spawning period (September 15 to November 30), Sultan River, Washington. Points indicate date and number of redd observations.	12
Figure 5.	Average daily flows (2007) downstream of the powerhouse (top) and diversion dam (bottom) during steelhead spawning period (March 15 to June 15), Sultan River, Washington. Points indicate date and number of redd observations.	14
Figure 6.	Average daily flows (2008) downstream of the powerhouse (top) and diversion dam (bottom) during steelhead spawning period (March 15 to June 15), Sultan River, Washington. Points indicate date and number of redd observations.	15
Figure 7.	Average daily flows (2007) downstream of the powerhouse (top) and diversion dam (bottom) during summer rearing period (June 15 to August 15), Sultan River, Washington. Points indicate date and number of juvenile fish observations made during snorkel surveys.	16
Figure 8.	Steelhead spawning microhabitat suitability criteria curves including State Fallback Curves, site specific utilization curves, and recommended modified curves.	18
Figure 9.	Chinook spawning microhabitat HSC curves including State Fallback, site specific utilization curves, and recommended modified curves	19
Figure 10.	Juvenile coho salmon microhabitat suitability criteria curves including State Fallback Curves, site specific utilization curves, and recommended modified curves.	20
Figure 11.	Juvenile trout microhabitat suitability criteria curves including State Fallback Curves, site specific utilization curves	21

TABLES

Table 1.	Species and life-history stage periodicity chart for anadromous species of interest in the Sultan River, WA (Adapted from Snohomish PUD and City of Everett PAD, 2005). Target life stages in bold	2
Table 2.	Species and life-history stage periodicity chart for resident species of interest in the Sultan River, WA (Adapted from Snohomish PUD and City of Everett PAD, 2005). Target life stages in bold	3
Table 3.	Species and life stages for which State Fallback Curves will be applied on the Sultan River instream flow study, and rationale for use	22

1. INTRODUCTION

One of the major components in completion of the Sultan River Instream Flow Study (RSP 3) is the selection and use of species and life stage Habitat Suitability Criteria (HSC) curves. HSC curves reflect species and life stage use of selected habitat parameters (depth, velocity, substrate, and cover) (Bovee 1986). Depending on the extent of data available, HSC curves can be developed from the literature (Category 1 curves), or from physical and hydraulic measurements made in the field over species microhabitats (Category 2 curves). When adjusted for availability, these latter curves may more accurately reflect species preference (Category 3 curves) (Bovee 1986).

Because the characteristics of the HSC curves have a major influence on calculations of the relationship between flow and potential habitat, having agreement with the agencies and stakeholders on the specific HSC curves to be used before completing detailed habitat – flow modeling is important. Washington State Instream Flow Study Guidelines (WDFW and WDOE 2008) suggest development of site-specific criteria curves or the use of agency fallback criteria.

Site-specific HSC curves are not available for the Sultan River, and therefore, R2 Resource Consultants (R2), as the contractor to the Snohomish County Public Utility District No. 1 (District) responsible for completing RSP 3 has collected (in cooperation with District biologist) site specific microhabitat use data on several species and selected life stages. This effort focused on two target species, Chinook salmon (*Oncorhynchus tshawytscha*) and steelhead trout (*O. mykiss*), both of which are listed as threatened under the federal Endangered Species Act (ESA), and hence decisions regarding an appropriate flow regime for the Sultan River will likely be based heavily on these two species. The instream flow study will also need to develop and consider habitat-flow relationships for other species that utilize the Sultan River including coho (*O. kisutch*), chum (*O. keta*) and pink salmon (*O. gorbuscha*), as well as cutthroat (*O. clarki*) and rainbow trout (*O. mykiss*). Thus, R2 also collected habitat use data for these species as they were encountered during the microhabitat surveys. The periodicities or timing of habitat use of anadromous and resident salmonid species in the Sultan River for different life stages are presented in Tables 1 and 2.

Table 1.Species and life-history stage periodicity chart for anadromous species of interest in the
Sultan River, WA (Adapted from Snohomish PUD and City of Everett PAD, 2005).
Target life stages in **bold**.

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Chinook Salmon (Target Species)												
Adult Migration									Х			
Spawning									Х	Х	Х	
Fry Emergence	Х	Х	Х									
Juvenile Rearing	Х	Х	Х	Х	Х	Х	Х	Х				
Juv. Outmigration	Х	Х	Х	Х	Х	Х	Х	Х				
Winter Steelhead Trout (Target Species)												
Adult Migration	Х	Х	Х	Х	Х						Х	Х
Spawning			Х	Х	Х	Х						
Fry Emergence					Х	Х	Х					
Juvenile Rearing	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Juv. Outmigration				Х	Х	Х	Х					
Coho Salmon												
Adult Migration									Х	Х	Х	Х
Spawning	Х										Х	Х
Fry Emergence			Х	Х	Х	Х						
Juvenile Rearing	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Juv. Outmigration				Х	Х	Х						
Chum Salmon												
Adult Migration										Х	Х	
Spawning											Х	Х
Fry Emergence			Х	Х	Х						Х	Х
Juvenile Rearing			Х	Х	Х							
Juv. Outmigration			Х	Х	Х							
Pink Salmon												
Adult Migration							Х	Х	Х	Х		
Spawning									Х	Х		
Fry Emergence			Х	Х	Х							
Juvenile Rearing			Х	Х	Х							
Juv. Outmigration			Х	Х	Х							

Table 2.Species and life-history stage periodicity chart for resident species of interest in the Sultan
River, WA (Adapted from Snohomish PUD and City of Everett PAD, 2005). Target life
stages in **bold.**

U												
Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Rainbow Trout												
Spawning				Х	Х	Х						
Fry Emergence							Х	Х	Х			
Adult and Juvenile Rearing	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Cutthroat Trout												
Spawning					Х	Х	Х					
Fry Emergence								Х	Х	Х		
Adult and Juvenile Rearing	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

2. OBJECTIVES

The overall objective of this study was to collect a sufficient number of data points (75-150) for each of the target species and life stages to generate a site specific set of HSC curves. For species and life stages for which limited or no microhabitat data were collected, R2 recommends use of the State Fallback Curves (WDFW and WDOE 2008).

3. DESCRIPTION OF STUDY AREA

The reach of the Sultan River affected by Culmback Dam and the City of Everett Diversion Dam extends from Culmback Dam located at River Mile (RM) 16.5 to the confluence with the Skykomish River (RM 0.0) (Figure 1). A detailed description of the physical and geomorphological structure of this section of the Sultan River is provided in the Pre-Application Document (2005) as well as in the RSP 22 (Physical Process Studies, Draft Technical Report; Stillwater Sciences 2008a) and RSP 18 (Riverine, Riparian and Wetland Habitat Assessment Technical Report; Stillwater Sciences 2008b) reports.

The 16.5 mile project reach contains a variety of fish habitat conditions. In general, the Sultan River from its mouth to Culmback Dam travels through two distinct channel forms, a low gradient alluvial channel with a broad floodplain (RM 0.0 to RM 2.7) and a relatively high gradient, confined canyon with steep side slopes (RM 2.7 to RM 16.5). There are relatively few perennial flowing tributary streams that enter the project reach; Chaplain Creek enters near RM 5.9, Marsh Creek enters near RM 7.6, and Big Four Creek near RM 11.2.

As a result of habitat surveys completed by the District in 2003 and 2004, the study reach was divided into 4 distinct reaches based on flow regime and channel characteristics (Figure 1). These reaches included:

- Reach 1A: Confluence with the Skykomish River (RM 0.0) upstream to the Bonneville Power Administration (BPA) transmission line crossing (RM 2.7)
- Reach 1B: BPA transmission line crossing (RM 2.7) upstream to Jackson powerhouse (RM 4.3)
- Reach 2: Jackson powerhouse (RM 4.3) upstream to City of Everett Diversion Dam (RM 9.7)
- Reach 3: City of Everett Diversion Dam (RM 9.7) upstream to Culmback Dam (RM 16.5)

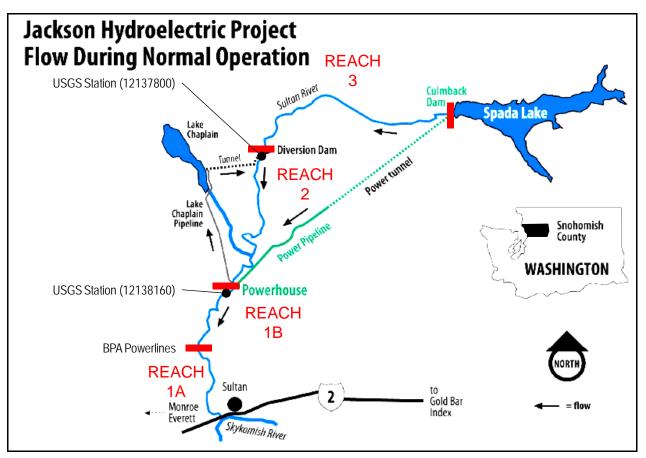


Figure 1. Jackson Hydroelectric Project - Sultan River operational reach breaks and locations of USGS stream flow monitoring stations.

4. DESCRIPTION OF STUDY SITES

The selection of study sites for collecting HSC microhabitat data was based on several factors, including:

- Selected sites needed to include a wide variety of habitat types that reflect or represent habitat conditions within the overall study reach.
- Sites should be sufficiently distant to compensate for differences in local fish densities that may result in behavioral shifts in habitat selections.
- Study sites must be readily accessible and pose a low hazard of potential injury to surveyors.
- To the extent possible, the study sites should encompass segments that were part of the instream analysis and the juvenile fish study (RSP 5).

5. METHODS

The Sultan River microhabitat study focused on collecting data related to spawning habitat use, and juvenile (and adult – *for resident salmonids*) rearing habitat use. Adult spawner surveys were conducted on-foot during three time periods:

- Fall (September November) 2006 and 2007,
- Summer (June and July) 2007, and
- Spring 2008 (April and May).

Juvenile and adult rearing surveys were completed using snorkel survey techniques during the summer (July/August) of 2007. Specific methodologies pertaining to habitat measurements, stream flow conditions during the sampling periods, and data analysis are described below.

5.1 SPAWNING SURVEYS

Spawner surveys were conducted as part of a larger monitoring program conducted by District fish biologists to monitor spawning activity in the Sultan River basin. Active spawning locations were identified by District staff during pedestrian and helicopter surveys of the river completed as part of their annual spawner surveys. This information was used to identify areas with the highest concentration of spawning activity for each of the target fish species (Chinook salmon and steelhead trout).

All spawning surveys were conducted by walking the stream channel in an upstream direction, and identifying the location of newly constructed spawning nests (redds). For each identified redd, the following measurements were made: 1) redd dimensions (length and width [to nearest 0.5 ft] to allow computation of area); 2) water depth to the nearest 0.1 feet at the upstream end of each redd measured using a top setting wading rod; 3) mean water column velocity (fps) at the upstream end of each redd measured to the nearest 0.01 fps using a Swoffer Model 2100 current meter; and 4) substrate size (dominant, sub-dominant, and percent dominant) characterized in accordance with the size classifications described in WDFW Instream Flow Study Guidelines (February 12, 2008). In addition, representative digital photographs of selected redds were taken.

5.2 SNORKEL SURVEYS – JUVENILE AND ADULT REARING

Snorkel surveys were conducted by a team of two or three fish biologists with extensive experience in salmonid species identification. In general, the steps used in completing these surveys included:

- Survey Preparation All field equipment used for collecting microhabitat data was checked and assembled for use. This included completing a spin test of calibrated velocity meters, and assembling/gathering the top setting rod, marking weights and/or flagging, underwater lights, and dry suits. Stream discharge data for the Sultan River was obtained from the District and USGS. Stream flows were monitored on the day of the survey and at least two days prior to the survey to ensure stable flow conditions during sampling.
- Sampling Conditions/Visibility Assessment Prior to each survey, a secchi disk reading was taken to determine the visibility corridor for sampling. For this, a secchi disk was held underwater by the data recorder, and a tape measure extended by the snorkeler from the secchi disk outward to a point where the disk is no longer clearly visible (Figure 2). As a rule, when visibility conditions were less than four feet, no sampling occurred. Water temperature was also recorded at the beginning of each survey.

To ensure accurate estimation of fish size underwater, the snorkelers calibrated their sight to a ruler prior to beginning each survey. Rulers and objects of know length (e.g., fingers, marks on diving gloves) were used during the survey to maintain accuracy in the estimation of fish length.

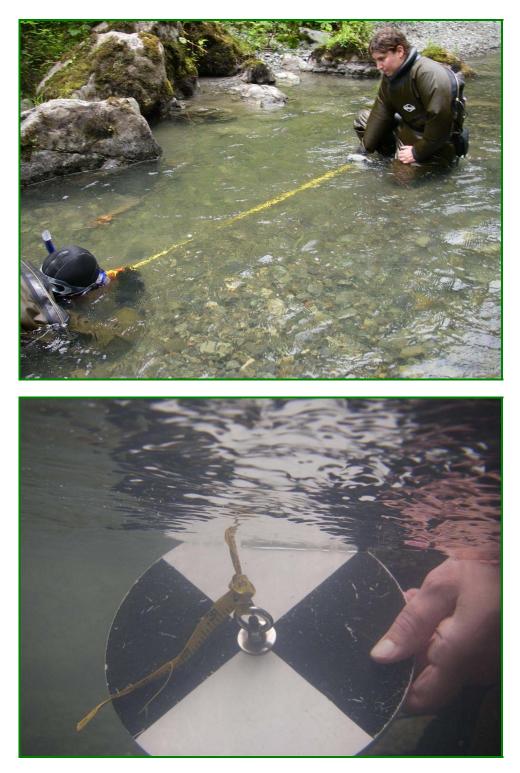


Figure 2. Visibility conditions were assessed using a secchi disk prior to conducting microhabitat snorkel surveys in the Sultan River, Washington.

- 3. Snorkel Survey/Fish Observations Starting at the lower/downstream point within a study site, the snorkelers proceeded in an upstream direction making observations of all microhabitat types within their line of sight (Figure 3). When two divers were working together, both sides of the river were covered, with the midpoint of the river serving as the delineation point of coverage for each diver. When a fish was observed the snorkeler verbally transmitted the following information to the data recorder:
 - Fish species
 - Fish length (mm)
 - Location in water column (distance from the bottom)
 - Substrate use classification
 - Proximity/affinity to habitat structure/cover features (e.g., boulder, undercut bank, overhanging vegetation, large woody debris)
 - Relevant comments pertaining to cover associations and/or behavioral characteristics of the fish observed.

Only fish holding over a fixed position were included in the microhabitat survey. Moving fish were not be enumerated in order to minimize inaccurate habitat measurements, and to prevent double-counting of fish.

- 1. *Microhabitat Measurements* Subsequent to locating a fish observation, the data recorder proceeded to the fish location and collected the following information:
 - Water depth measured to the nearest 0.1 feet using a top setting rod
 - Mean column velocity (fps) measured using a Swoffer Model 2100 current meter
 - Substrate classification classified in accordance with the size classifications described in WDFW Instream Flow Study Guidelines (February 12, 2008)

All data were recorded in a waterproof survey book; the data were reviewed in the field to ensure that all measurements were properly recorded and were legible prior to departure. Digital photographs were taken of representative habitat types where fish of different species and size classes were observed.

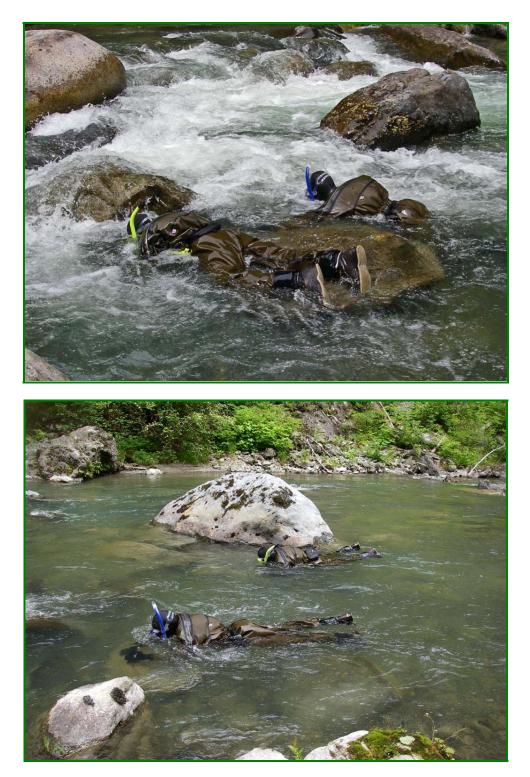


Figure 3. Photographs of snorkelers making fish observations in Reach 2 of the Sultan River, Washington.

5.3 FLOW CONDITIONS

The quantity and rate (cubic feet per second) of stream flow within the Sultan River during the time of fish use, to a large degree, determines the distribution of microhabitat (depth and velocity) combinations that are available to fish. Stream flow records for the Sultan River are available from two USGS continuous flow monitoring stations. The upstream most station (USGS 12137800) is located at the upper end of river Reach 2 just downstream of the City of Everett Diversion Dam (Figure 1). The second station (USGS 12138160) is located at the upper most end of river Reach 1B just downstream of the Jackson Powerhouse (Figure 1). Average daily flow records were obtained for each of these gages for the spawning periods of both steelhead trout (March 15 – June 15) and Chinook salmon (September 15 – November 15). The spawning period for both species was identified by reviewing long-term spawner survey data and personal communications with District fisheries biologist Keith Binkley. The period of flow record obtained from each gage corresponds to the year(s) that site specific HSC data collection occurred.

5.4 DATA ANALYSIS

Prior to calculation of the HSC curves, the habitat data collected in the Sultan River were entered into commercially available spreadsheets and subsequently checked for data entry accuracy. Data were sorted according to species type and life-history stage. Frequency distributions were then generated for mean velocity, depth, and substrate type for each species. Frequency bin widths of 0.1 were initially used to evaluate the mean velocity and depth utilization distributions. Histogram plots of depth and mean column velocity utilization were produced using a 0.2 bin width (Appendix B).

The 0.2 bin sizes were generally found to be too small for constructing meaningful HSC curves. Sturges (1926) suggested that the optimal bin size could be determined using the formula:

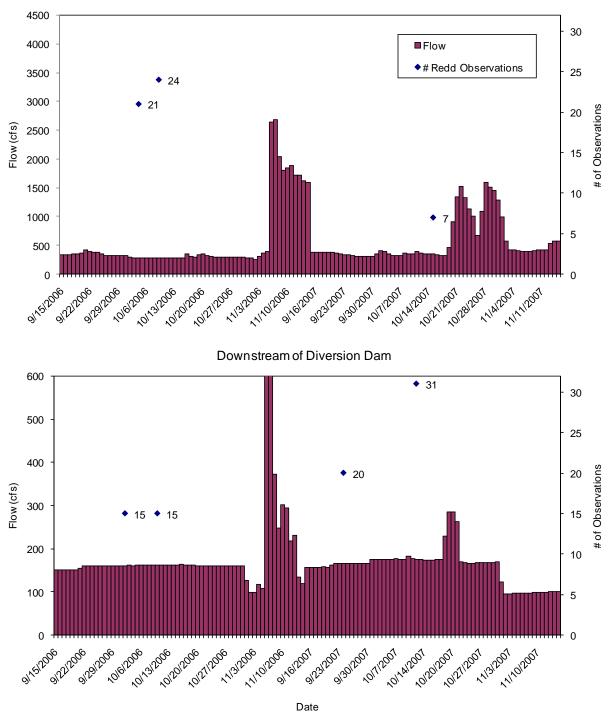
$$R/(1+3.322Log(n))$$

Where R is the range of values and n is the total number of observations. Optimal velocity and depth bin sizes determined using the Sturges' formula were around 0.3 ft/s and ~0.5-1.0 ft, respectively. The frequency distribution of the field observations was then converted into HSC curves by scaling the distribution between 0 and 1 (utilization values divided by the maximum value observed). For comparative purposes, these HSC curves were then plotted together with the State Fallback Curves.

6. RESULTS

This section presents the results of the microhabitat surveys completed on the Sultan River during the fall of 2006; spring, summer, and fall of 2007; and spring 2008. Specific sections pertain to results of the microhabitat surveys for Chinook and steelhead spawning redds, adult and juvenile snorkel surveys, and recommended modifications to the State Fallback Curves are presented below.

6.1 CHINOOK SALMON HSC SURVEYS


Chinook spawning HSC surveys were first conducted in the fall of 2006. Redd measurements were completed by District staff during four separate surveys occurring between October 2 and October 10, 2006. A total of 75 individual redd HSC measurements were made during the 2006 Chinook spawning period. Of this total, 45 measurements were made in study Reach 1A and the remaining 30 were made in study Reach 2 (Appendix A). Stream flow conditions during the spawning period (and redd measurement) were relatively stable with median flows of approximately 160 cfs in Reach 2 and 316 cfs in Reach 1A (Figure 4).

In the fall of 2007, a total of 58 individual redd HSC measurements were made during three separate surveys between September 24 and October 15. Of the total measurements, 51 were made in Reach 2 and 7 were made in Reach 1A (Appendix A). Stream flow conditions during the 2007 Chinook spawning period were similar to conditions observed in 2006, with median daily flows of approximately 166 cfs in Reach 2 and 383 cfs in Reach 1A (Figure 4).

Water depth at the Chinook redds (measured just upstream of the redd pit) ranged from 0.7 to 3.6 feet, with the highest utilization occurring between 1.0 and 2.4 feet deep (Appendix B). Mean column water velocity (measured just upstream of the redd pit) ranged from 0.58 fps to a high of 3.35 fps, with the highest utilization occurring between 1.2 and 2.7 fps (Appendix B). Substrate composition (dominant and subdominant) at each of the redd locations was characterized as predominately large gravels and cobble (1.5 inch to 12 inch diameter). HSC curves for this species and life stage were derived from the utilization data and plotted with the State Fallback Curves for comparison.

6.2 STEELHEAD TROUT HSC SURVEYS

Steelhead spawning HSC surveys were conducted in 2007 and 2008 and resulted in the measurement of a total of 67 redds. Due to poor visibility in the Sultan River during the spring steelhead spawning period, the 2007 surveys could not be conducted until after the first week of July. The surveys were conducted by District staff during two separate surveys occurring on July 7th and 13th. A total of 34 individual redd HSC measurements were made during the two

Downstream of Powerhouse

Figure 4. Average daily flows (2006 and 2007) downstream of the powerhouse (top) and diversion dam (bottom) during Chinook spawning period (September 15 to November 30), Sultan River, Washington. Points indicate date and number of redd observations.

surveys. The number of observations was nearly evenly split between Reach 1A and Reach 2, with 18 and 16 redd measurements respectively. Stream flow conditions during most of the 2007 steelhead spawning period (and redd measurement) were relatively stable with median flows of approximately 597 cfs in Reach 1A and 178 cfs in Reach 2 (Figure 5).

In the spring/summer of 2008, a total of 33 individual redd HSC measurements were made during two separate surveys of Reach 2. The first survey occurred on April 23 and the second survey was completed approximately two weeks later on May 6th. Again, the number of observations was nearly evenly split between the two surveys; with 18 redd measurements completed during the April 23 survey and 15 on the May 6th visit. Stream flows in Reach 2 during the 2008 steelhead spawning period were stable with a maximum flow of 202 cfs and minimum flow of 174 cfs (Figure 6).

Water depths at the steelhead redds (measured just upstream of the redd pit) ranged from 0.8 to 3.5 feet, with the highest utilization occurring between 1.5 and 2.5 feet deep (Appendix A). Mean column water velocity (measured just upstream of the redd pit) ranged from a low of 0.78 fps to a high of 3.5 fps, with the highest utilization occurring between 1.0 and 2.5 fps (Appendix B). Substrate composition (dominant and subdominant) at each of the redd locations was characterized as predominately large gravels and cobble (1.5 inch to 12 inch diameter). HSC curves for this species and life stage were derived from the utilization data and plotted with the State Fallback Curves for comparison.

6.3 JUVENILE/FRY SALMONID HSC SNORKEL SURVEYS

Snorkel surveys were conducted by a team of R2 staff consisting of two to three snorkelers and one note taker during two separate site visits in 2007. The first survey occurred on July 27th and the second on August 8th. The snorkel surveys were completed in conjunction with field studies being carried out as part of juvenile fish abundance and habitat use surveys (RSP-5). Stream flow conditions prior to each of the surveys were stable within both Reach 1A and Reach 2, with flows of approximately 350 cfs and 95 cfs respectively (Figure 7). Large numbers of juvenile steelhead/rainbow trout and coho salmon were observed results of HSC measurements are presented separately for each species. Only three adult trout (rainbow trout >120 mm length) were observed during either of the two surveys; no results are presented for this life stage.

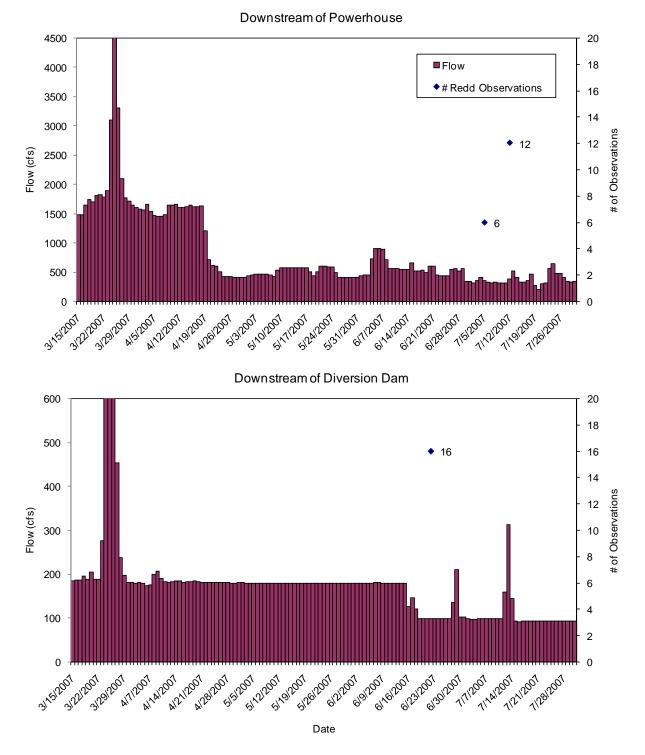


Figure 5. Average daily flows (2007) downstream of the powerhouse (top) and diversion dam (bottom) during steelhead spawning period (March 15 to June 15), Sultan River, Washington. Points indicate date and number of redd observations.

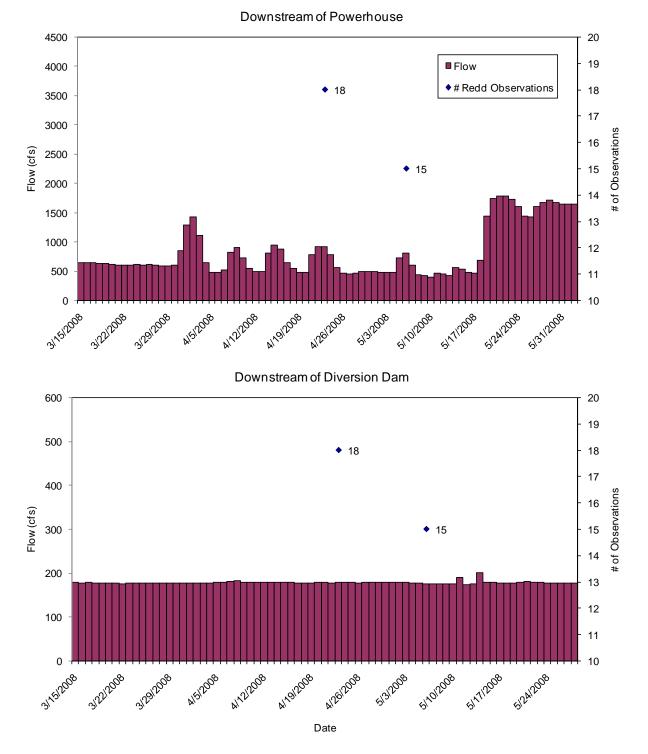


Figure 6. Average daily flows (2008) downstream of the powerhouse (top) and diversion dam (bottom) during steelhead spawning period (March 15 to June 15), Sultan River, Washington. Points indicate date and number of redd observations.

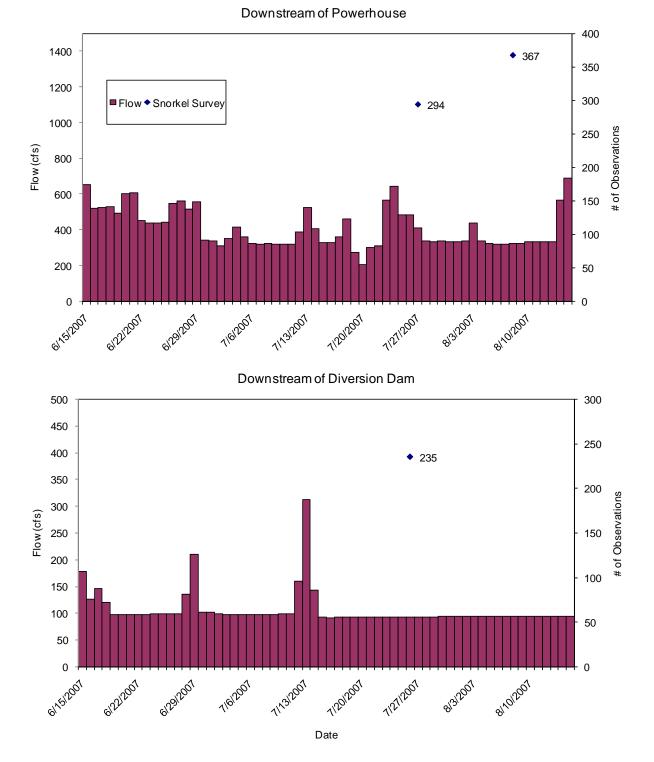


Figure 7. Average daily flows (2007) downstream of the powerhouse (top) and diversion dam (bottom) during summer rearing period (June 15 to August 15), Sultan River, Washington. Points indicate date and number of juvenile fish observations made during snorkel surveys.

6.4 COHO SALMON - JUVENILE

A total of 459 juvenile (>60mm < 100 mm length) coho salmon were observed in Reaches 1A and 2 during the two HSC surveys. Over 90 percent of the juvenile coho observed during the two surveys were located in Reach 1A, with only 42 of the total observations made in Reach 2. These fish were observed at depths between 0.35 and 4.0 feet, and at mean column velocities between 0.02 and 1.71 fps (Appendix B). Peak utilization for water depth occurred between 0.5 and 2.5 feet deep and 0.1 to 0.6 fps for mean column velocity. These fish used substrates ranging from gravel to boulders, with peak utilization observed in proximity to large gravel and cobble sized substrates. HSC curves for this species and life stage were derived from the utilization data and plotted with the State Fallback Curves for comparison.

6.5 STEELHEAD/RAINBOW TROUT - FRY

A total of 431 steelhead/rainbow trout fry (< 60 mm length) were observed in Reaches 1A and 2 during the two HSC surveys. The number of observations were nearly equally split between Reaches 1A and 2 with 238 and 193, respectively. These fish were observed at depths between 0.2 and 2.5 feet, and at mean column velocities between 0.0 and 2.03 fps (Appendix B). Peak utilization for water depth occurred between 0.5 and 0.8 feet deep and 0.1 to 0.6 fps for mean column velocity. Substrate utilization varied widely from sand to boulder with peak utilization observed in proximity to large gravel and cobble sized substrates. HSC curves for this species and life stage were derived from the utilization data and plotted with the State Fallback Curves for comparison.

7. RECOMMENDED HSC CURVES

Site specific microhabitat utilization measurements were collected for four distinct species and life stages of fish in the Sultan River: spawning steelhead trout (n observations = 68), spawning Chinook salmon (n observations = 133), juvenile coho salmon (n observations = 459), and steelhead/rainbow trout fry (n observations = 431). For each of these species and life stages, HSC curves (depth and velocity) were developed using the site specific observations normalized to a suitability of 1.0. Plots of the resulting HSC utilization curves, State Fallback Curves, and for the spawning life stage of two species (steelhead trout and Chinook salmon spawning) and juvenile coho salmon the proposed modified curves, are presented in Figures 8 to 11. Because either no site specific data were collected or the data collected did not suggest modification, R2 proposes to utilize State Fallback Curves for the Species and Life stages noted in Table 3 and presented in Appendix C.

Util.

0.0

0.0

1.0

1.0

1.0

1.0

0.5

0.5

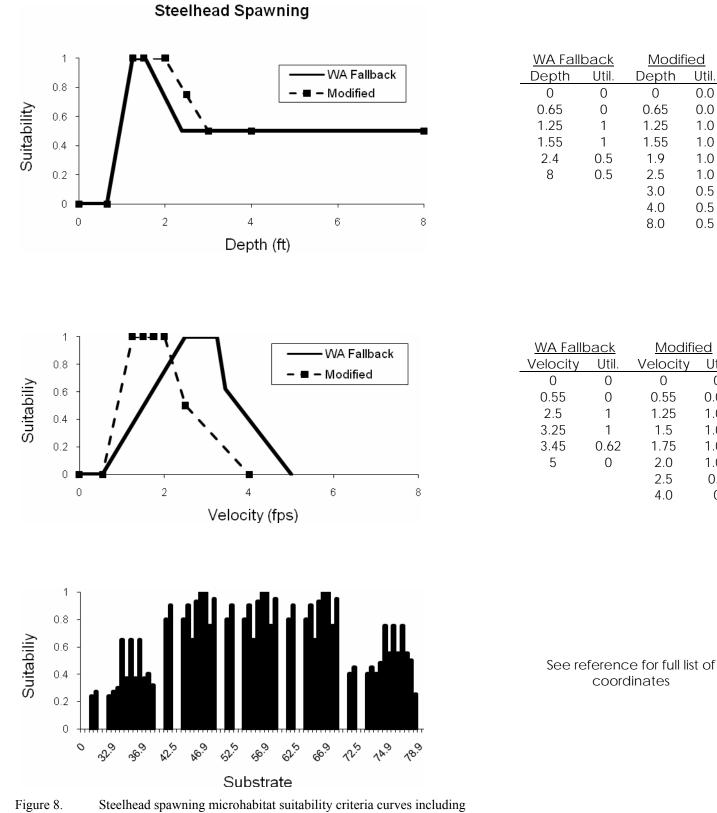
0.5

Util.

0

0.00

1.00


1.00

1.00

1.00

0.5

0

State Fallback Curves, site specific utilization curves, and recommended modified curves.

0

0

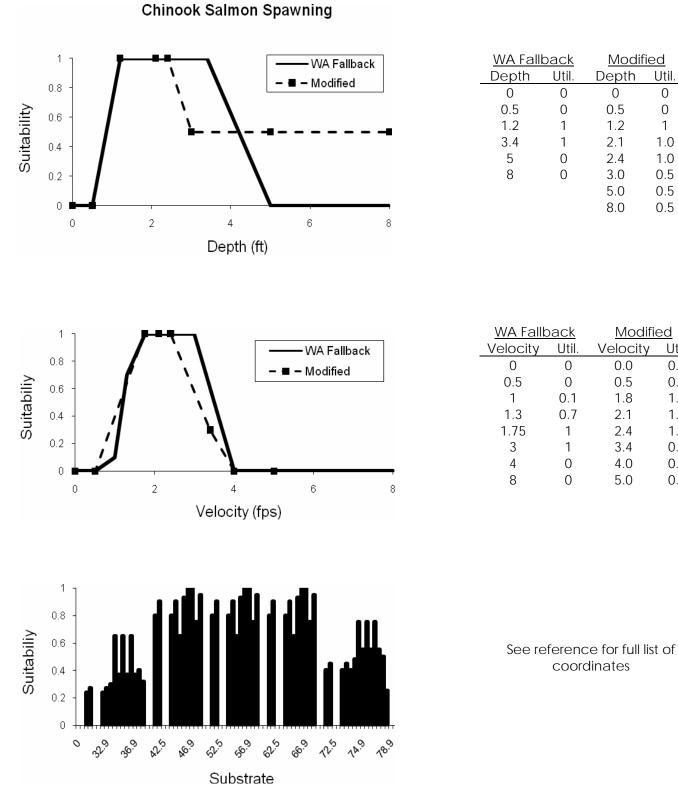
1

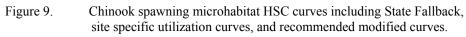
Util.

0.0

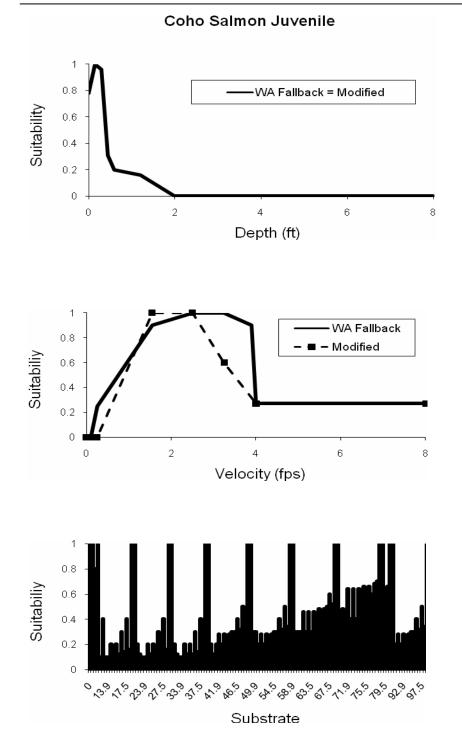
0.0

1.0


1.0

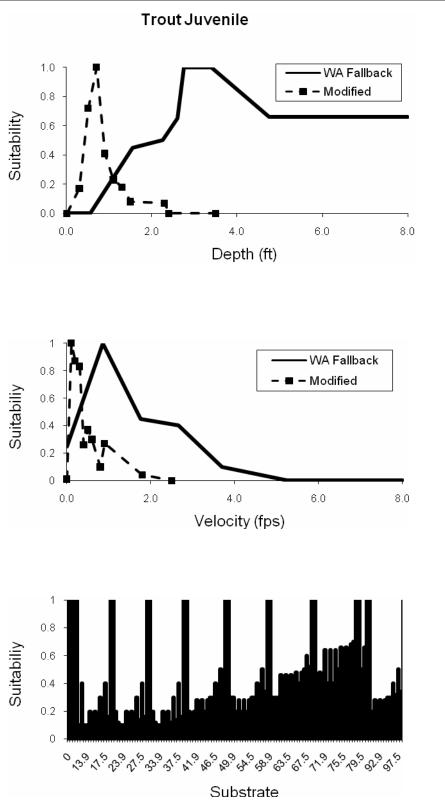

1.0

0.3


0.0

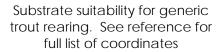
0.0

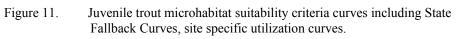
R2 Resource Consultants, Inc. 1628.05/HSC Report_060508



Depth	Util.
0	0.78
0.15	1
0.3	0.96
0.45	0.31
0.6	0.2
1.2	0.16
2	0
8	0

WA Fallk	back	Modifie	<u>ed</u>
Velocity	Util.	Velocity	Util.
0	0	0	0
0.1	0	0.1	0
0.25	0.25	0.25	0
1.55	0.9	1.55	1
2.5	1	2.5	1
3.25	1	3.25	0.6
3.9	0.9	4	0.27
4	0.27	8	0.27
8	0.27		


See reference for full list of coordinates


Figure 10.	Juvenile coho salmon microhabitat suitability criteria curves including
	State Fallback Curves, site specific utilization curves, and
	recommended modified curves.

<u>WA Fall</u>	<u>back</u>	<u>Modified</u>		
Depth	Util.	Depth	Util.	
0.0	0.0	0.01	0	
0.55	0.0	0.3	0.17	
1.55	0.45	0.5	0.72	
2.25	0.5	0.7	1.0	
2.6	0.7	0.9	0.41	
2.75	1	1.1	0.23	
3.4	1	1.3	0.18	
4.75	0.66	1.5	0.08	
8	0.66	2.3	0.07	
		2.4	0	
		3.5	0	

<u>WA Fallk</u>	<u>WA Fallback</u>		ed
Velocity	Util.	Velocity	Util.
0.0	0.25	0	0.01
0.85	1	0.1	1.00
1.75	0.45	0.2	0.87
2.65	0.4	0.3	0.83
3.7	0.1	0.4	0.26
5.25	0	0.5	0.37
8.0	0	0.6	0.30
		0.8	0.10
		0.9	0.27
		1.8	0.04
		2.5	0.00

Species	Life Stage	Rationale for Using State Fallback Curves
Chinook salmon	Juvenile	insufficient observations to develop site specific criteria
Steelhead trout	Juvenile	no data collected; observations only made of fry life stage
Coho salmon	Juvenile	site specific data collected but Utilization Curve did not indicate modification warranted
Chum salmon	Spawning	no data collected
Chum salmon	Juvenile	no data collected
Pink salmon	Spawning	no data collected
Rainbow trout	Spawning	no data collected
Rainbow trout	Adult	no data collected
Rainbow trout	Juvenile	no data collected
Cutthroat trout	Spawning	no data collected
Cutthroat trout	Adult	no data collected
Cutthroat trout	Juvenile	no data collected

Table 3.Species and life stages for which State Fallback Curves will be applied on the Sultan River
instream flow study, and rationale for use.

The two modified HSC curves for steelhead and Chinook spawning that are proposed for use on the Sultan River instream flow study, as well as the curves developed for juvenile coho and rainbow/steelhead fry that are not being proposed for use are discussed below.

7.1 STEELHEAD TROUT SPAWNING

Utilization curves for steelhead spawning were developed for both mean column velocity and water depth. The utilization curve for velocity begins at 0.5 fps (= 0) and is followed by a sharp increase to a single peak at 1.5 fps (= 1), a sharp decrease to 2.0 fps (= 0.57) and then gradually declining to 3.75 fps (= 0) (Figure 8). The State Fallback Curve for velocity begins similarly at 0.55 fps (=0), but then increases uniformly to a peak of 2.5 fps (= 1) that extends to 3.25 fps (= 1) before decreasing sharply to 3.45 fps (= 0.62) followed by a gradual decrease to 5 fps (= 0). Thus, the peaks of the two curves differ by1 fps at the lower end of the peak of the State Fallback Curve and by 1.75 fps at the upper end of the peak. Importantly, only 8 of the 66 measurements made over steelhead redds in the Sultan River were found in velocities of \geq 3 fps suggesting that steelhead spawning in the Sultan River are generally using slower velocities than would be indicated by the upper end of the State Fallback Curve. As a result, R2 is proposing to modify the State Fallback Curve for velocity based on the site specific data. However, rather than simply recommending the utilization curve with its single sharp point, R2 has visually smoothed

and extended the curve to include a wider range of velocities as optimum (1.25 to 2 fps) before decreasing and following the descending limb to 3.75 fps (-0). The descending limb of the modified curve was specifically fit to match the relative shape and slope of the observed steelhead spawning utilization with a suitability of 0 for mean column velocities greater than 4.0 fps. Extending the suitable range of mean column velocity to a maximum of 4.0 fps covers the entire range of observed water velocities for all steelhead redd observations. In general, the peak and shape of the descending limb are similar in form to the State Fallback Curve, but offset lower by 1 to 1.25 fps (Figure 8).

For depth, the utilization data indicated that use began at 0.9 ft and then increased sharply as depth increased up to an optimum usage at 2 ft, a decrease to 2.5 ft, a sharp decrease to 3 ft and then a gradual decrease in use as depths increased above 3 ft. In contrast, the State Fallback Curves suggests no use at depths of \leq 0.65 ft, optimum depths occurring from 1.25 to 1.55 ft, followed by a decrease in use once depths exceed 2.4 ft. The State Fallback Curve for depth does not intersect with zero but is maintained at the 0.5 level out through depths of 8 ft. Thus, it is velocity rather than depth that becomes the limiting parameter relative to defining spawning habitat. Based on the site specific data and a review of the State Fallback Curve, R2 is recommending adoption of the ascending limb of the State Fallback Curve up to 1.25 ft but extending the range of optimal depth to 2 ft before descending to 3 ft where suitability is maintained at 0.5 out to 8 ft (Figure 8). Similar to the velocity curve, the proposed descending limb is similar to the State Fallback Curve, but based on site specific data is offset by a depth that is about 0.5 ft greater.

Although substrate utilization observations were recorded at each of the surveyed steelhead spawning redds, the data generally match the State Fallback Curve and no modifications are proposed.

7.2 CHINOOK SALMON SPAWNING

Utilization curves were likewise developed for Chinook spawning for both mean column velocity and water depth. The utilization curve for velocity begins at 0.5 fps (= 0) followed by a relatively sharp steady increase to 2.1 fps, a single peak at 1.5 fps (= 1), followed by a sharp decrease to 1.8 fps (= 1.0), and then declining in a series of steps to 3.7 (= 0) (Figure 9). The State Fallback Curve for velocity begins similarly at 0.5 fps (= 0), but then increases steadily to a peak of 1.75 fps (= 1) that extends to 3 fps (= 1) before decreasing sharply to 4 fps (= 0). Thus, the peaks of the two curves differ by 0.25 fps at the lower end of the peak of the State Fallback Curve and by 1.5 fps at the upper end of the peak. For the measurements collected over Chinook redds, only 10 of 133 were found in velocities \geq 3 fps suggesting that like steelhead, the Chinook spawning in the Sultan River tend to use slightly slower velocities than would be indicated by the

upper end of the State Fallback Curve. As a result, R2 is proposing to modify the State Fallback Curve for velocity based on the site specific data. As was done for steelhead, rather than recommending the utilization curve with its single sharp peak and multiple decreasing peaks, R2 visually smoothed and extended the curve to include a wider range of velocities as optimum (1.8 to 2.4 fps) before decreasing and following the descending limb to 4 fps (-0). The upper ³/₄ of the descending limb of the modified curve was fit about mid-way between the utilization curve and the State Fallback Curve.

For depth, the utilization data indicated that use began at 0.6 ft (= 0), increased sharply at depths of 1.3 to 1.6 ft (-0.53), followed by a sharp increase in use at depths of 2 ft (=1). Utilization then declined sharply as depths increased from 2.4 ft (= 0.7) to 3.8 ft (- 0). In contrast, the State Fallback Curves suggest no use at depths of \leq 0.5 ft, optimum depths occurring from 1.2 to 3.4 ft, followed by no use once depths exceed 5 ft. Unlike the State Fallback Curve for steelhead depth, the State Fallback Curve for Chinook does intersect with zero at 5 ft. Based on the site specific data and a review of the State Fallback Curve, R2 is recommending a relatively minor adjustment to the ascending limb of the State Fallback Curve that essentially renders it as a single direct increase from 0.5 (= 0) to 1.8 ft. The range of optimal depths would extend to 2.4 ft which is 1 ft less than indicated by the State Fallback Curve. The descending limb then decreases sharply to 3 ft (= 0.5) and then is maintained at the 0.5 suitability level out to 8 ft. This differs from the State Fallback Curve that continues and intersects the x-axis at 5 ft (= 0). However, the modification pertaining to having depth non-limiting as proposed by R2 is consistent with the steelhead depth curve noted above and does not set an upper limit to the depth of water that may be utilized by spawning Chinook salmon.

As for steelhead, although substrate utilization observations were recorded at each of the surveyed Chinook spawning redds, the data appear to match the State Fallback Curve and so no modifications to the State Fallback Curve for Chinook spawning substrate suitability are recommended.

7.3 COHO JUVENILE

Both the ascending and descending limbs of the mean column water velocity utilization for juvenile coho salmon nearly identically matched the State Fallback Curve (Figure 10). The peak of the HSC utilization curve (suitability 1.0 = 0.15 cfs) and the maximum observed velocity utilization (2.0 cfs) match the State Fallback Curve. The additional data collected as part of this study essentially confirmed the applicability of the State Fallback Curves for use in the Sultan River, and as a result, R2 recommends use of the State Fallback Curve for juvenile coho salmon velocity.

The minimum water depth utilization observed during the 2007 snorkel surveys for juvenile coho was 0.4 feet. The ascending limb of the R2 modified juvenile coho salmon depth curve follows the shape of the utilization data to 1.5 ft (= 1). The range of water depth that provides a suitability of 1.0 extends from 1.5 ft to 2.5 ft. The frequency of utilization of water depth greater than 2.5 feet falls off considerably to a depth of 4.0 ft (Figure 10). The suitability of water depth greater than 4.0 ft was kept at a constant suitability of 0.27 which does not set an upper limit to the depth of water that may be utilized by juvenile coho salmon. Although these data support some modification to the State Fallback Curve for juvenile coho depth, R2 generally supports a "depth not limiting" concept when related to juvenile rearing habitats. The general premise is that the extent and range of habitats that will be used by juvenile fish will be limited by velocity, not by the depth of water. As a result, R2 recommends use of the State Fallback Curve for juvenile coho salmon depth, since it affords higher suitability to a wider range of depths than that suggested by the R2 data.

7.4 STEELHEAD/RAINBOW TROUT FRY

State Fallback Curves are not available for steelhead/rainbow trout fry. The HSC utilization curves presented in Figure 11 (Obs.) represent habitat usage by trout fry less than 60 millimeters in total length. The State Fallback Curves for Trout Juvenile appear to represent habitat suitability for much larger trout (Figure 11). Consequently, R2 is proposing to use the State Fallback Curves (depth, velocity, and substrate) for juvenile trout and not to include the steelhead/rainbow trout fry HSC curves as part of the instream flow study. However, if stakeholders request use of steelhead/rainbow trout fry HSC curves as part of the instream flow assessment, R2 recommends that the utilization curves presented in Figure 11 be used without modification.

8. TECHNICAL REVIEW MEETING

The District proposes to meet with agency and stakeholder representatives to present the results of this analysis and discuss the modified HSC curves proposed for use in the habitat modeling. The presentation will include a discussion of data collection and analysis techniques, other data sets reviewed, and the technical basis and rationale for each of the two modified curves. Comments from stakeholders and agencies will be solicited during the meeting on each of the curves, with the goal of reaching a consensus agreement on the final set of HSC curves to be used in the modeling.

Subsequent to the meeting, R2 will incorporate agency and stakeholder comments into a final draft report that will describe the process used in developing the HSC curves, including the comments received during the review meeting. This report will contain the final set of HSC

curves that will be used in the habitat-flow modeling, and will be appended as part of the instream flow study report.

9. REFERENCES

- Bovee, K. D. 1986. Development and evaluation of habitat suitability criteria for use in Instream Flow Incremental Methodology. Instream Flow Information Paper 21. U.S. Fish and Wildlife Service, Biological Report 86(7). 235 pp.
- Stillwater Sciences and Meridian Environmental. 2008a. Study Plan 22: Sultan River physical process studies, draft technical report. Prepared for Snohomish County Public Utility District No. 1.
- Stillwater Sciences and Meridian Environmental. 2008b. Study Plan 18: riverine, riparian and wetland habitat assessment, technical report. Prepared for Snohomish County Public Utility District No. 1.
- Sturges, H. A. 1926. The Choice of a Class Interval. J. Amer. Stat. Assoc. 21: 65-66.
- Public Utility District No. 1 of Snohomish County and City of Everett. 2005. Pre-Application Document. Henry M. Jackson Hydroelectric Project, FERC 2157.
- Washington Department of Fish and Wildlife and Washington Department of Ecology. 2008. Instream flow study guidelines, technical and habitat suitability issues. Error correction update February 12, 2008.

APPENDIX A

Sultan River HSC Curve Observation Data: 2006 – 2008

Date 7/7/2007 7/7/2007 7/7/2007 7/7/2007 7/7/2007 7/7/2007 7/7/2007 7/7/2007 7/7/2007	Reach 2 Reach 2 Reach 2 Reach 2 Reach 2 Reach 2 Reach 2 Reach 2 Reach 2	Species Steelhead Steelhead Steelhead Steelhead Steelhead	Life Stage Spawning Spawning Spawning Spawning Spawning	Obs. 1 1 1 1 1 1	(ft) 0.88 1.19 1.20	(fps) 1.46 1.44	(Dom.) MG MG	(Sub.)
7/7/2007 7/7/2007 7/7/2007 7/7/2007 7/7/2007	Reach 2 Reach 2 Reach 2 Reach 2 Reach 2	Steelhead Steelhead Steelhead Steelhead	Spawning Spawning Spawning	1 1	1.19	1.44		
7/7/2007 7/7/2007 7/7/2007 7/7/2007	Reach 2 Reach 2 Reach 2 Reach 2	Steelhead Steelhead Steelhead	Spawning Spawning	1			MG	
7/7/2007 7/7/2007 7/7/2007	Reach 2 Reach 2 Reach 2	Steelhead Steelhead	Spawning		1.20	1 (4		
7/7/2007 7/7/2007	Reach 2 Reach 2	Steelhead	1 0	1		1.64	MG	
7/7/2007	Reach 2		Snawning		0.95	0.78	MG	
		Steelhood	Spawning	1	1.70	3.08	MG	
7/7/2007	Reach 2	Siccineau	Spawning	1	1.40	2.69	MG	
		Steelhead	Spawning	1	1.68	2.59	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	1.32	1.90	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	2.40	1.70	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	1.80	2.19	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	1.14	2.49	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	2.00	1.55	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	2.40	1.52	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	2.21	1.54	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	2.10	1.49	MG	
7/7/2007	Reach 2	Steelhead	Spawning	1	0.95	0.79	SG	
7/7/2007	Reach 1A	Steelhead	Spawning	1	1.80	2.76	MG	
7/7/2007	Reach 1A	Steelhead	Spawning	1	1.85	2.78	LG	
7/7/2007	Reach 1A	Steelhead	Spawning	1	1.70	2.66	MG	
7/7/2007	Reach 1A	Steelhead	Spawning	1	1.45	2.46	MG	
7/7/2007	Reach 1A	Steelhead	Spawning	1	1.40	3.13	MG	
7/7/2007	Reach 1A	Steelhead	Spawning	1	1.75	3.41	MG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.40	2.73	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.50	2.77	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.10	2.34	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.10	1.95	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.50	3.59	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.60	1.54	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	2.00	1.37	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.50	1.61	SC	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.00	1.20	LG	

Sultan River HSC Curve Observation Data: 2006 - 2008

Date	Reach	Species	Life Stage	# of Obs.	Depth (ft)	Velocity (fps)	Substrate	
							(Dom.)	(Sub.)
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.70	2.40	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.60	2.12	LG	
7/13/2007	Reach 1A	Steelhead	Spawning	1	1.50	2.14	SC	
4/23/2008	Reach 2	Steelhead	Spawning	1	2.35	2.91	SC	LG
4/23/2008	Reach 2	Steelhead	Spawning	1	1.9	3.34	SC	LG
4/23/2008	Reach 2	Steelhead	Spawning	1	2.25	1.9	LG	SC
4/23/2008	Reach 2	Steelhead	Spawning	1	1.4	3.2	LG	SC
4/23/2008	Reach 2	Steelhead	Spawning	1	1.9	1.77	LG	SC
4/23/2008	Reach 2	Steelhead	Spawning	1	1.75	1.94	LG	SC
4/23/2008	Reach 2	Steelhead	Spawning	1	2.55	2.09	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	1.8	1.96	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	1.8	2.34	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	1.3	1.59	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	1.6	1.92	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	2.3	1.9	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	2	1.63	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	2.55	1.255	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	3.15	1.22	LG	SG
4/23/2008	Reach 2	Steelhead	Spawning	1	1.3	1.14	SG	LG
4/23/2008	Reach 2	Steelhead	Spawning	1	2.5	1.375	SG	LG
4/23/2008	Reach 2	Steelhead	Spawning	1	2.15	1.62	SG	LG
5/6/2008	Reach 2	Steelhead	Spawning	1	1.3	3.24	SC	LG
5/6/2008	Reach 2	Steelhead	Spawning	1	1.8	2.51	SC	LG
5/6/2008	Reach 2	Steelhead	Spawning	1	1.15	1.96	SC	LG
5/6/2008	Reach 2	Steelhead	Spawning	1	2.65	1.89	SC	LG
5/6/2008	Reach 2	Steelhead	Spawning	1	2.35	2.68	LG	SC
5/6/2008	Reach 2	Steelhead	Spawning	1	3.5	2.38	LG	SC
5/6/2008	Reach 2	Steelhead	Spawning	1	1.5	1.54	LG	SC
5/6/2008	Reach 2	Steelhead	Spawning	1	2.65	2.47	LG	SG
5/6/2008	Reach 2	Steelhead	Spawning	1	2.5	1.36	LG	SG
5/6/2008	Reach 2	Steelhead	Spawning	1	2.4	2.31	LG	SG

Sultan River HSC Curve Observation Data: 2006 - 2008

		Species	Life Stage	# of Obs.	Depth (ft)	Velocity (fps)	Substrate	
Date	Reach						(Dom.)	(Sub.)
5/6/2008	Reach 2	Steelhead	Spawning	1	1.35	1.42	LG	SG
5/6/2008	Reach 2	Steelhead	Spawning	1	2.15	1.33	LG	SG
5/6/2008	Reach 2	Steelhead	Spawning	1	2.2	1.62	LG	SG
5/6/2008	Reach 2	Steelhead	Spawning	1	1.25	2.1	LG	SG
5/6/2008	Reach 2	Steelhead	Spawning	1	1.7	1.58	LG	SG
10/2/2006	Reach 2	Chinook	Spawning	1	0.95	0.58	RB	CB
10/2/2006	Reach 2	Chinook	Spawning	1	2.20	1.26	CB	CG
10/2/2006	Reach 2	Chinook	Spawning	1	1.60	1.67	CG	CB
10/2/2006	Reach 2	Chinook	Spawning	1	1.45	1.97	FG	RB
10/2/2006	Reach 2	Chinook	Spawning	1	1.65	1.46	CG	CB
10/2/2006	Reach 2	Chinook	Spawning	1	1.85	1.97	RB	CB
10/2/2006	Reach 2	Chinook	Spawning	1	0.90	1.52	CB	CG
10/2/2006	Reach 2	Chinook	Spawning	1	2.10	1.54	RB	CB
10/2/2006	Reach 2	Chinook	Spawning	1	2.45	1.80	RB	CB
10/2/2006	Reach 2	Chinook	Spawning	1	2.45	1.39	CG	CB
10/2/2006	Reach 2	Chinook	Spawning	1	1.50	2.52	CG	CB
10/2/2006	Reach 2	Chinook	Spawning	1	1.70	1.93	CB	CG
10/2/2006	Reach 2	Chinook	Spawning	1	2.50	0.61	RB	CB
10/2/2006	Reach 2	Chinook	Spawning	1	1.90	1.40	CB	RB
10/2/2006	Reach 2	Chinook	Spawning	1	2.00	0.98	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.55	2.07	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.10	1.86	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	2.10	0.87	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	2.10	2.55	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	2.10	1.83	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	2.30	1.74	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	2.20	1.73	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.40	2.14	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	2.20	2.43	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.90	2.24	CB	RB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.85	2.34	RB	CB

Sultan River HSC Curve Observation Data: 2006 - 2008

				# of	Depth	Velocity	Subst	rate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
10/4/2006	Reach 1A	Chinook	Spawning	1	1.20	1.20	RB	BO
10/4/2006	Reach 1A	Chinook	Spawning	1	1.20	1.20	RB	BO
10/4/2006	Reach 1A	Chinook	Spawning	1	1.75	1.75	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	2.20	2.20	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.75	1.75	RB	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.35	1.35	RB	BO
10/4/2006	Reach 1A	Chinook	Spawning	1	1.20	1.20	CG	CB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.10	1.10	RB	BO
10/4/2006	Reach 1A	Chinook	Spawning	1	0.80	0.80	CB	RB
10/4/2006	Reach 1A	Chinook	Spawning	1	1.10	1.10	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	0.70	1.35	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	1.10	1.65	RB	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	0.95	1.02	RB	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	1.35	2.10	RB	BO
10/9/2006	Reach 1A	Chinook	Spawning	1	1.70	2.17	CG	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	2.05	0.84	CG	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	1.85	2.59	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	1.70	2.43	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	2.35	1.90	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	2.70	1.48	CB	CG
10/9/2006	Reach 1A	Chinook	Spawning	1	2.65	1.57	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	2.45	2.54	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	0.75	1.31	CG	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	1.20	2.97	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	1.35	2.43	CG	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	2.15	2.84	CB	CG
10/9/2006	Reach 1A	Chinook	Spawning	1	1.25	1.17	CB	RB
10/9/2006	Reach 1A	Chinook	Spawning	1	2.15	2.21	CG	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	2.15	1.86	CG	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	0.70	1.71	CB	CG
10/9/2006	Reach 1A	Chinook	Spawning	1	1.35	1.39	CB	CG

				# of	Depth	Velocity	Subst	rate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
10/9/2006	Reach 1A	Chinook	Spawning	1	1.40	3.16	CG	CB
10/9/2006	Reach 1A	Chinook	Spawning	1	1.20	2.84	CB	CG
10/9/2006	Reach 1A	Chinook	Spawning	1	1.30	1.65	FG	CG
10/10/2006	Reach 2	Chinook	Spawning	1	3.60	0.76	CB	CG
10/10/2006	Reach 2	Chinook	Spawning	1	3.40	0.86	CG	FG
10/10/2006	Reach 2	Chinook	Spawning	1	1.90	1.30	FG	CG
10/10/2006	Reach 2	Chinook	Spawning	1	1.25	1.73	RB	CB
10/10/2006	Reach 2	Chinook	Spawning	1	1.80	2.15	CB	RB
10/10/2006	Reach 2	Chinook	Spawning	1	3.40	1.36	CG	RB
10/10/2006	Reach 2	Chinook	Spawning	1	1.70	3.19	RB	CB
10/10/2006	Reach 2	Chinook	Spawning	1	1.70	3.19	RB	CB
10/10/2006	Reach 2	Chinook	Spawning	1	1.70	3.19	RB	CB
10/10/2006	Reach 2	Chinook	Spawning	1	1.90	1.95	CB	CG
10/10/2006	Reach 2	Chinook	Spawning	1	2.10	1.95	CG	CB
10/10/2006	Reach 2	Chinook	Spawning	1	2.00	2.64	CG	CB
10/10/2006	Reach 2	Chinook	Spawning	1	2.45	1.78	CB	CG
10/10/2006	Reach 2	Chinook	Spawning	1	3.50	1.52	CG	CB
10/10/2006	Reach 2	Chinook	Spawning	1	2.30	2.28	CB	RB
9/24/2007	Reach 2	Chinook	Spawning	1	1.95	2.09	CG	RB
9/24/2007	Reach 2	Chinook	Spawning	1	2.80	2.52	FG	CG
9/24/2007	Reach 2	Chinook	Spawning	1	1.90	1.90	RB	FG
9/24/2007	Reach 2	Chinook	Spawning	1	1.90	1.90	RB	FG
9/24/2007	Reach 2	Chinook	Spawning	1	1.45	1.45	RB	FG
9/24/2007	Reach 2	Chinook	Spawning	1	1.75	1.75	CG	RB
9/24/2007	Reach 2	Chinook	Spawning	1	0.95	0.95	FG	CG
9/24/2007	Reach 2	Chinook	Spawning	1	0.70	0.70	FG	CG
9/24/2007	Reach 2	Chinook	Spawning	1	2.10	2.30	CG	FG
9/24/2007	Reach 2	Chinook	Spawning	1	2.10	1.36	CG	FG
9/24/2007	Reach 2	Chinook	Spawning	1	2.10	1.71	CG	CB
9/24/2007	Reach 2	Chinook	Spawning	1	2.30	0.96	CB	CG
9/24/2007	Reach 2	Chinook	Spawning	1	1.20	1.15	CG	CB

				# of	Depth	Velocity	Subst	trate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
9/24/2007	Reach 2	Chinook	Spawning	1	2.10	1.72	RB	CB
9/24/2007	Reach 2	Chinook	Spawning	1	1.45	2.93	RB	CB
9/24/2007	Reach 2	Chinook	Spawning	1	1.75	2.61	RB	CB
9/24/2007	Reach 2	Chinook	Spawning	1	2.30	1.40	RB	CB
9/24/2007	Reach 2	Chinook	Spawning	1	2.90	1.58	RB	CB
9/24/2007	Reach 2	Chinook	Spawning	1	1.90	1.32	RB	CB
9/24/2007	Reach 2	Chinook	Spawning	1	2.10	0.96	CB	CG
9/24/2007	Reach 2	Chinook	Spawning	1	2.35	1.37	CG	CB
0/12/2007	Reach 2	Chinook	Spawning	1	1.15	1.27	CG	FG
10/12/2007	Reach 2	Chinook	Spawning	1	2.00	2.27	CB	CG
10/12/2007	Reach 2	Chinook	Spawning	1	2.05	2.79	CB	RB
10/12/2007	Reach 2	Chinook	Spawning	1	0.95	3.32	CB	CG
10/12/2007	Reach 2	Chinook	Spawning	1	1.00	0.67	RB	FG
0/12/2007	Reach 2	Chinook	Spawning	1	0.70	0.91	CG	CB
0/12/2007	Reach 2	Chinook	Spawning	1	1.00	1.55	CG	CB
10/12/2007	Reach 2	Chinook	Spawning	1	2.00	1.93	CG	CB
0/12/2007	Reach 2	Chinook	Spawning	1	2.40	1.73	CG	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.95	2.31	CG	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.25	2.36	CB	CG
10/12/2007	Reach 2	Chinook	Spawning	1	2.00	2.38	CB	CG
10/12/2007	Reach 2	Chinook	Spawning	1	0.90	2.21	CG	FG
10/12/2007	Reach 2	Chinook	Spawning	1	2.45	1.80	CB	CG
10/12/2007	Reach 2	Chinook	Spawning	1	1.75	1.62	CB	CG
10/12/2007	Reach 2	Chinook	Spawning	1	1.35	2.40	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.65	2.25	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.70	2.54	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.45	2.50	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	2.10	2.03	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.10	1.09	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.40	1.12	CB	FG
10/12/2007	Reach 2	Chinook	Spawning	1	1.75	2.77	RB	CB

				# of	Depth	Velocity	Subst	rate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
10/12/2007	Reach 2	Chinook	Spawning	1	1.60	1.80	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.40	3.35	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.75	2.31	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	1.30	1.52	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	0.70	3.27	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	0.85	2.63	RB	CB
10/12/2007	Reach 2	Chinook	Spawning	1	2.60	1.13	CG	CB
10/12/2007	Reach 2	Chinook	Spawning	1	2.60	1.33	CG	CB
10/15/2007	Reach 1A	Chinook	Spawning	1	1.10	1.50	RB	CB
10/15/2007	Reach 1A	Chinook	Spawning	1	1.80	1.67	CB	CG
10/15/2007	Reach 1A	Chinook	Spawning	1	0.70	1.99	RB	CB
10/15/2007	Reach 1A	Chinook	Spawning	1	1.10	1.03	CB	CG
10/15/2007	Reach 1A	Chinook	Spawning	1	0.90	1.26	RB	CB
10/15/2007	Reach 1A	Chinook	Spawning	1	1.40	1.43	RB	CB
10/15/2007	Reach 1A	Chinook	Spawning	1	2.15	3.16	CB	CG
7/27/2007	Reach 1A	Trout	Fry	3	0.2	0.02	LC	SC
7/27/2007	Reach 1A	Trout	Fry	2	0.25	0.02	LC	SC
7/27/2007	Reach 1A	Trout	Fry	2	0.3	0.02	LC	SC
7/27/2007	Reach 1A	Trout	Fry	2	0.55	0.02	SC	SG
7/27/2007	Reach 1A	Trout	Fry	4	0.7	0.02	LC	SC
7/27/2007	Reach 1A	Trout	Fry	1	0.8	0.02	SC	LG
7/27/2007	Reach 1A	Trout	Fry	2	1.2	0.02	LC	SC
7/27/2007	Reach 1A	Trout	Fry	1	1.25	0.02	LG	LC
7/27/2007	Reach 1A	Trout	Fry	1	1.95	0.02	SC	LG
7/27/2007	Reach 1A	Trout	Fry	3	0.3	0.03	SC	LC
7/27/2007	Reach 1A	Trout	Fry	1	1	0.05	LC	SC
7/27/2007	Reach 1A	Trout	Fry	1	0.55	0.06	SC	LG
7/27/2007	Reach 1A	Trout	Fry	1	0.50	0.10	SC	LC
7/27/2007	Reach 1A	Trout	Fry	5	0.6	0.10	SC	LG
7/27/2007	Reach 1A	Trout	Fry	1	1.40	0.10	В	LC
7/27/2007	Reach 1A	Trout	Fry	20	0.60	0.12	SC	LC

				# of	Depth	Velocity	Subst	trate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
7/27/2007	Reach 1A	Trout	Fry	2	0.55	0.13	SC	LC
7/27/2007	Reach 1A	Trout	Fry	2	0.6	0.13	SC	LG
7/27/2007	Reach 1A	Trout	Fry	2	0.45	0.20	SC	LC
7/27/2007	Reach 1A	Trout	Fry	1	0.7	0.21	SC	LC
7/27/2007	Reach 1A	Trout	Fry	2	0.5	0.23	SC	LC
7/27/2007	Reach 1A	Trout	Fry	4	0.4	0.24	LG	LC
7/27/2007	Reach 1A	Trout	Fry	5	0.5	0.27	SC	LG
7/27/2007	Reach 1A	Trout	Fry	6	0.65	0.28	SC	LC
7/27/2007	Reach 1A	Trout	Fry	5	0.80	0.34	SC	LC
7/27/2007	Reach 1A	Trout	Fry	1	0.50	0.35	SC	LG
7/27/2007	Reach 1A	Trout	Fry	3	0.85	0.42	SC	LG
7/27/2007	Reach 1A	Trout	Fry	1	0.9	0.43	SC	LC
7/27/2007	Reach 1A	Trout	Fry	3	0.7	0.47	SC	LG
7/27/2007	Reach 1A	Trout	Fry	1	0.60	0.50	SC	LC
7/27/2007	Reach 1A	Trout	Fry	1	0.95	0.51	SC	LG
7/27/2007	Reach 1A	Trout	Fry	3	0.95	0.58	SC	LG
7/27/2007	Reach 1A	Trout	Fry	1	1.8	0.81	SC	LG
7/27/2007	Reach 1A	Trout	Fry	20	0.60	0.83	SC	LC
7/27/2007	Reach 1A	Trout	Fry	1	0.70	0.83	SC	LC
7/27/2007	Reach 2	Trout	Fry	1	2.15	0.00	В	LC
7/27/2007	Reach 2	Trout	Fry	1	0.45	0.01	LC	LG
7/27/2007	Reach 2	Trout	Fry	1	0.70	0.02	В	LC
7/27/2007	Reach 2	Trout	Fry	2	0.80	0.02	LC	LG
7/27/2007	Reach 2	Trout	Fry	1	1.40	0.02	В	LC
7/27/2007	Reach 2	Trout	Fry	3	0.60	0.03	В	LG
7/27/2007	Reach 2	Trout	Fry	30	0.75	0.03	LG	В
7/27/2007	Reach 2	Trout	Fry	10	0.45	0.05	SC	LC
7/27/2007	Reach 2	Trout	Fry	6	1.05	0.05	LC	LG
7/27/2007	Reach 2	Trout	Fry	6	0.55	0.06	LC	LG
7/27/2007	Reach 2	Trout	Fry	5	1.30	0.06	В	SC

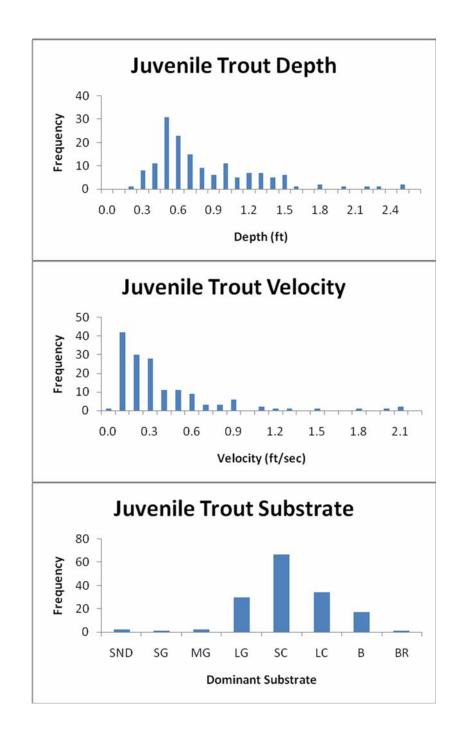
				# of	Depth	Velocity	Subst	trate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
7/27/2007	Reach 2	Trout	Fry	6	0.65	0.11	SC	MG
7/27/2007	Reach 2	Trout	Fry	1	0.95	0.11	SND	SG
7/27/2007	Reach 2	Trout	Fry	2	2.30	0.11	В	LC
7/27/2007	Reach 2	Trout	Fry	4	0.25	0.12	MG	LG
7/27/2007	Reach 2	Trout	Fry	3	0.45	0.12	LC	LG
7/27/2007	Reach 2	Trout	Fry	1	1.25	0.12	В	MG
7/27/2007	Reach 2	Trout	Fry	4	0.40	0.14	LC	MG
7/27/2007	Reach 2	Trout	Fry	15	0.65	0.15	В	LG
7/27/2007	Reach 2	Trout	Fry	2	1.40	0.19	SC	LG
7/27/2007	Reach 2	Trout	Fry	1	0.75	0.20	В	MG
7/27/2007	Reach 2	Trout	Fry	4	0.70	0.21	SC	LG
7/27/2007	Reach 2	Trout	Fry	1	1.50	0.21	LC	В
7/27/2007	Reach 2	Trout	Fry	1	0.55	0.23	LG	LC
7/27/2007	Reach 2	Trout	Fry	2	0.85	0.23	LC	LG
7/27/2007	Reach 2	Trout	Fry	1	1.60	0.27	В	SG
7/27/2007	Reach 2	Trout	Fry	3	0.95	0.29	LG	SC
7/27/2007	Reach 2	Trout	Fry	30	0.55	0.30	LG	В
7/27/2007	Reach 2	Trout	Fry	3	0.40	0.40	LC	LG
7/27/2007	Reach 2	Trout	Fry	1	1.30	0.41	SND	SG
7/27/2007	Reach 2	Trout	Fry	1	0.70	0.45	В	MG
7/27/2007	Reach 2	Trout	Fry	5	1.00	0.49	LC	SG
7/27/2007	Reach 2	Trout	Fry	6	0.65	0.50	LC	LG
7/27/2007	Reach 2	Trout	Fry	1	0.40	0.52	LG	В
7/27/2007	Reach 2	Trout	Fry	15	0.50	0.58	SC	LC
7/27/2007	Reach 2	Trout	Fry	3	0.55	0.58	SG	LG
7/27/2007	Reach 2	Trout	Fry	2	1.10	0.60	LG	В
7/27/2007	Reach 2	Trout	Fry	2	0.85	0.69	LG	В
7/27/2007	Reach 2	Trout	Fry	2	0.55	0.75	SC	LC
7/27/2007	Reach 2	Trout	Fry	1	1.05	1.09	LG	LC
7/27/2007	Reach 2	Trout	Fry	1	1.15	1.72	LC	LG
	Reach 2	Trout	Fry		1.45	2.01		

Sultan River HSC Curve Observation Data: 2006 - 2008

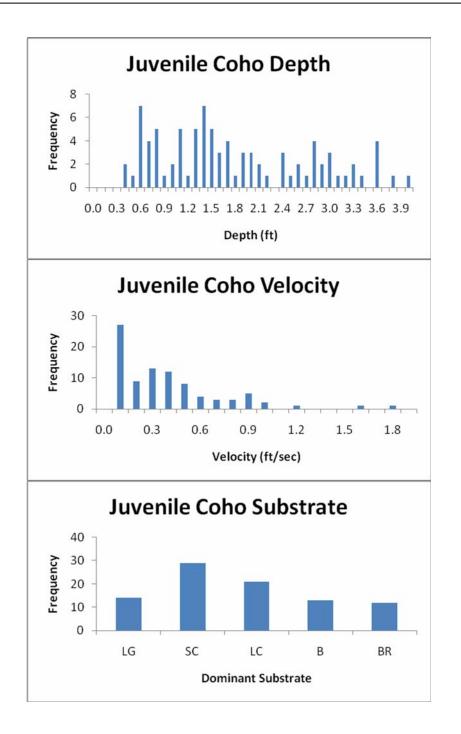
				# of	Depth	Velocity	Substrate	
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
7/27/2007	Reach 2	Trout	Fry	1	1.50	2.03	LG	LC
8/8/2007	Reach 1A	Trout	Fry	1	0.4	0.02	LG	SC
8/8/2007	Reach 1A	Trout	Fry	3	0.5	0.03	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.06	SC	LG
8/8/2007	Reach 1A	Trout	Fry	3	0.3	0.08	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.4	0.08	LG	SC
8/8/2007	Reach 1A	Trout	Fry	3	0.7	0.19	SC	LC
8/8/2007	Reach 1A	Trout	Fry	1	0.55	0.22	LG	SC
8/8/2007	Reach 1A	Trout	Fry	3	0.5	0.25	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	1	0.25	SC	LC
8/8/2007	Reach 1A	Trout	Fry	2	0.3	0.27	LG	SND
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.30	SC	LC
8/8/2007	Reach 1A	Trout	Fry	3	0.5	0.30	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.95	0.33	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.75	0.72	LG	SND
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.02	LG	MG
8/8/2007	Reach 1A	Trout	Fry	3	0.5	0.07	LG	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.15	SC	LC
8/8/2007	Reach 1A	Trout	Fry	1	0.45	0.20	LG	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.75	0.22	SC	LG
8/8/2007	Reach 1A	Trout	Fry	2	0.45	0.27	LG	SC
8/8/2007	Reach 1A	Trout	Fry	3	0.85	0.28	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.6	0.30	LG	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.35	LG	SC
8/8/2007	Reach 1A	Trout	Fry	4	0.5	0.40	LG	MG
8/8/2007	Reach 1A	Trout	Fry	6	0.4	0.02	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	1.2	0.03	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.75	0.11	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.3	0.15	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.6	0.32	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.9	0.74	SC	LG

				# of	Depth	Velocity	Substrate	
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.85	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	1.25	0.08	В	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.3	0.13	LG	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.7	0.15	В	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.45	0.17	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.4	0.19	LG	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.35	0.23	LG	MG
8/8/2007	Reach 1A	Trout	Fry	1	0.45	0.26	LG	SC
8/8/2007	Reach 1A	Trout	Fry	2	1.3	0.36	SC	MG
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.54	LG	MG
8/8/2007	Reach 1A	Trout	Fry	1	2.5	0.59	SC	LC
8/8/2007	Reach 1A	Trout	Fry	1	2.5	0.66	В	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.45	0.86	LG	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.89	LG	LC
8/8/2007	Reach 1A	Trout	Fry	1	1.1	1.10	SC	LC
8/8/2007	Reach 1A	Trout	Fry	1	1.4	1.18	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	1.5	1.24	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	1.45	1.49	SC	LG
8/8/2007	Reach 1A	Trout	Fry	1	1.5	1.96	В	LC
8/8/2007	Reach 1A	Trout	Fry	1	1.75	0.18	В	LC
8/8/2007	Reach 1A	Trout	Fry	1	0.8	0.05	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	1.4	0.08	LC	SC
8/8/2007	Reach 1A	Trout	Fry	2	0.5	0.29	LC	SC
8/8/2007	Reach 1A	Trout	Fry	2	0.6	0.40	SC	LG
8/8/2007	Reach 1A	Trout	Fry	2	1.2	0.42	LC	LG
8/8/2007	Reach 1A	Trout	Fry	1	0.6	0.05	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.6	0.06	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.24	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.6	0.33	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	0.5	0.70	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	1.2	0.20	SC	LC

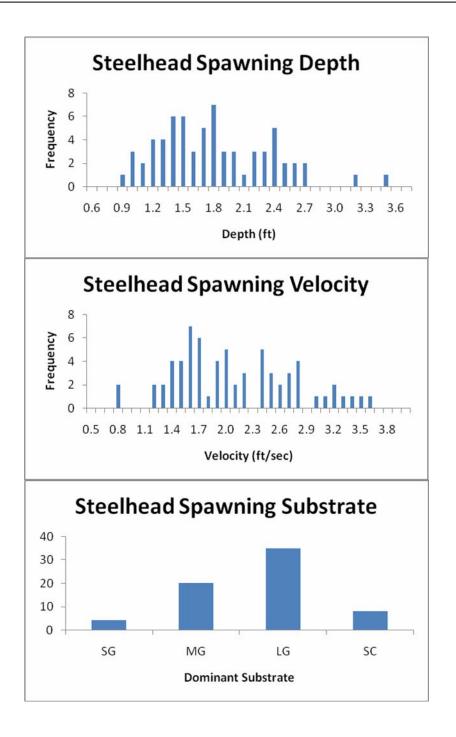
				# of	Depth	Velocity	Subst	rate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
8/8/2007	Reach 1A	Trout	Fry	1	1	0.23	SC	LC
8/8/2007	Reach 1A	Trout	Fry	1	1	0.27	SC	LC
8/8/2007	Reach 1A	Trout	Fry	1	1.1	0.48	SC	LC
8/8/2007	Reach 1A	Trout	Fry	1	1.2	0.59	BR	SC
8/8/2007	Reach 1A	Trout	Fry	5	0.7	0.02	SC	LC
8/8/2007	Reach 1A	Trout	Fry	2	1.2	0.02	LC	SC
8/8/2007	Reach 1A	Trout	Fry	4	0.7	0.04	SC	LG
8/8/2007	Reach 1A	Trout	Fry	5	0.4	0.11	SC	В
8/8/2007	Reach 1A	Trout	Fry	1	1.3	0.12	LC	SC
8/8/2007	Reach 1A	Trout	Fry	3	0.5	0.13	LC	SC
8/8/2007	Reach 1A	Trout	Fry	2	0.6	0.14	LC	SC
8/8/2007	Reach 1A	Trout	Fry	1	1	0.14	SC	LG
8/8/2007	Reach 1A	Trout	Fry	2	0.8	0.38	LC	SC
8/8/2007	Reach 1A	Trout	Fry	12	0.6	0.50	SC	В
/27/2007	Reach 1A	Coho	Juvenile	1	0.80	0.02	LG	SLT
/27/2007	Reach 1A	Coho	Juvenile	1	1.25	0.02	LG	LC
/27/2007	Reach 1A	Coho	Juvenile	1	1.70	0.02	В	LC
/27/2007	Reach 1A	Coho	Juvenile	10	1.7	0.02	SC	LG
/27/2007	Reach 1A	Coho	Juvenile	10	1.9	0.02	SC	LG
7/27/2007	Reach 1A	Coho	Juvenile	20	2.2	0.02	SC	LG
7/27/2007	Reach 1A	Coho	Juvenile	20	1.5	0.06	LC	LG
7/27/2007	Reach 1A	Coho	Juvenile	20	1.9	0.06	SC	LG
//27/2007	Reach 1A	Coho	Juvenile	12	1.55	0.07	SC	LG
//27/2007	Reach 1A	Coho	Juvenile	1	1.45	0.08	LC	SND
7/27/2007	Reach 1A	Coho	Juvenile	12	1.1	0.09	SC	LG
7/27/2007	Reach 1A	Coho	Juvenile	20	1.8	0.10	SC	LG
7/27/2007	Reach 1A	Coho	Juvenile	10	0.60	0.12	SC	LC
7/27/2007	Reach 1A	Coho	Juvenile	6	1.25	0.19	LG	LC
7/27/2007	Reach 1A	Coho	Juvenile	20	1.95	0.20	LC	LG
7/27/2007	Reach 1A	Coho	Juvenile	1	0.75	0.24	SC	LG
7/27/2007	Reach 1A	Coho	Juvenile	1	0.90	0.30	SC	LG

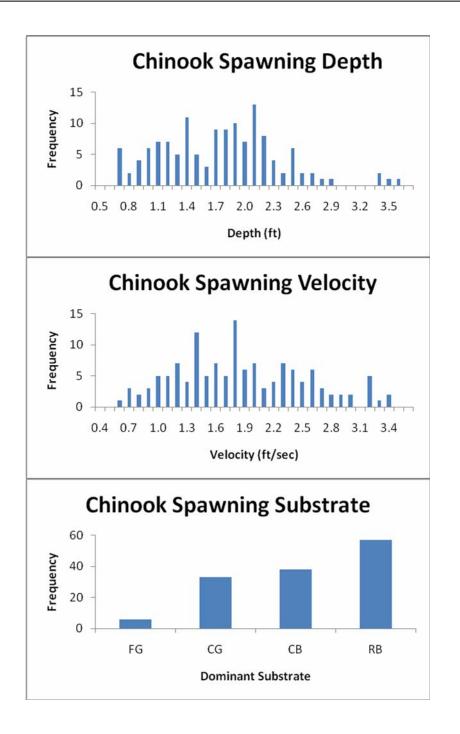

				# of	Depth	Velocity	Subst	trate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
7/27/2007	Reach 1A	Coho	Juvenile	4	1.3	0.63	LC	LG
7/27/2007	Reach 1A	Coho	Juvenile	10	0.60	0.83	SC	LC
7/27/2007	Reach 2	Coho	Juvenile	3	0.80	0.02	В	MG
7/27/2007	Reach 2	Coho	Juvenile	1	1.25	0.02	В	MG
7/27/2007	Reach 2	Coho	Juvenile	2	1.95	0.04	В	LC
7/27/2007	Reach 2	Coho	Juvenile	3	1.05	0.05	LC	LG
7/27/2007	Reach 2	Coho	Juvenile	1	0.65	0.15	В	LG
7/27/2007	Reach 2	Coho	Juvenile	1	1.40	0.22	SC	LG
7/27/2007	Reach 2	Coho	Juvenile	8	1.35	0.40	В	SG
7/27/2007	Reach 2	Coho	Juvenile	8	1.55	0.41	В	SG
7/27/2007	Reach 2	Coho	Juvenile	3	0.40	0.49	LC	MG
7/27/2007	Reach 2	Coho	Juvenile	1	0.60	0.50	LG	SC
7/27/2007	Reach 2	Coho	Juvenile	3	1.10	0.60	LG	В
7/27/2007	Reach 2	Coho	Juvenile	8	1.35	0.76	В	SG
8/8/2007	Reach 1A	Coho	Juvenile	1	0.55	0.26	SC	SG
8/8/2007	Reach 1A	Coho	Juvenile	2	0.65	0.32	LG	MG
8/8/2007	Reach 1A	Coho	Juvenile	3	0.7	0.34	LG	MG
8/8/2007	Reach 1A	Coho	Juvenile	1	0.55	0.38	LG	MG
8/8/2007	Reach 1A	Coho	Juvenile	3	0.65	0.40	LG	MG
8/8/2007	Reach 1A	Coho	Juvenile	3	0.45	0.15	LG	SC
8/8/2007	Reach 1A	Coho	Juvenile	3	0.75	0.23	LG	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	1.35	0.40	LG	SC
8/8/2007	Reach 1A	Coho	Juvenile	2	1.3	0.66	LG	SC
8/8/2007	Reach 1A	Coho	Juvenile	10	1.5	0.02	В	LC
8/8/2007	Reach 1A	Coho	Juvenile	10	1.7	0.09	В	LC
8/8/2007	Reach 1A	Coho	Juvenile	8	1.9	0.14	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	0.35	0.23	LG	MG
8/8/2007	Reach 1A	Coho	Juvenile	5	1.7	0.23	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.1	0.25	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.8	0.28	В	SC
8/8/2007	Reach 1A	Coho	Juvenile	1	3.3	0.32	В	LC

				# of	Depth	Velocity	Subst	rate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
8/8/2007	Reach 1A	Coho	Juvenile	1	2.9	0.42	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	3	0.43	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	3	0.47	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.8	0.48	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.6	0.51	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	1.4	0.58	SC	LG
8/8/2007	Reach 1A	Coho	Juvenile	1	1.45	0.60	SC	LG
8/8/2007	Reach 1A	Coho	Juvenile	3	1.5	0.69	SC	LG
8/8/2007	Reach 1A	Coho	Juvenile	1	1.1	0.75	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.6	0.83	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.8	0.84	В	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.4	1.52	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	1	2.5	1.71	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	2	0.8	0.06	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	6	3.4	0.19	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	8	3	0.20	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	8	3.1	0.26	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	4	3.95	0.28	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	8	3.6	0.32	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	8	3.6	0.38	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	13	0.95	0.02	LC	В
8/8/2007	Reach 1A	Coho	Juvenile	13	1.15	0.02	LC	В
8/8/2007	Reach 1A	Coho	Juvenile	13	1.35	0.02	LC	В
8/8/2007	Reach 1A	Coho	Juvenile	1	1.4	0.08	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	1	1.6	0.30	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	1	1.1	0.39	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	2	0.6	0.04	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	1	0.6	0.05	LC	SC
8/8/2007	Reach 1A	Coho	Juvenile	10	2.7	0.05	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	4	1	0.17	SC	LC
8/8/2007	Reach 1A	Coho	Juvenile	10	3.25	0.21	BR	SC

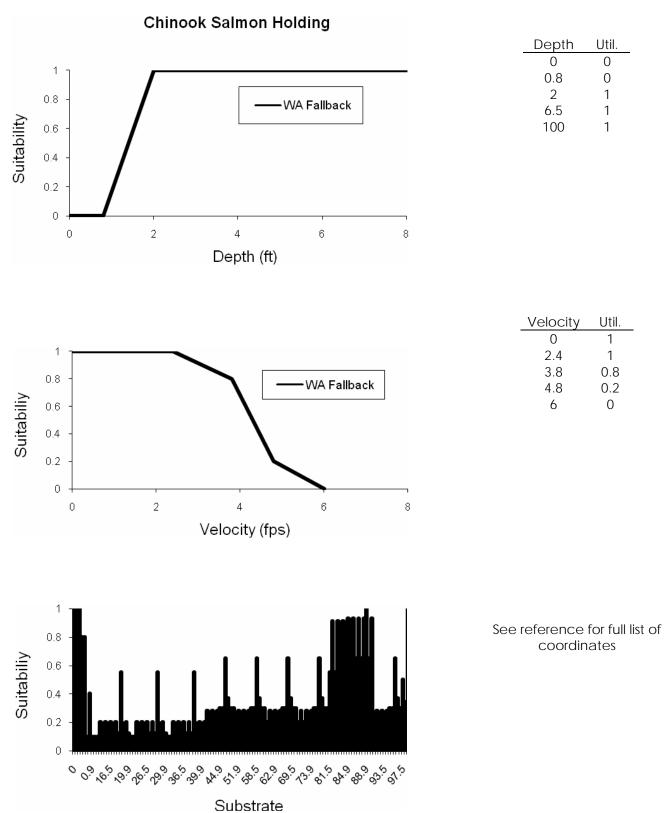

				# of	Depth	Velocity	Subst	rate
Date	Reach	Species	Life Stage	Obs.	(ft)	(fps)	(Dom.)	(Sub.)
8/8/2007	Reach 1A	Coho	Juvenile	10	3.6	0.36	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	10	3.6	0.40	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	10	3.8	0.44	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	3	2.1	0.78	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	3	2.4	0.82	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	6	3.2	0.86	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	4	2.8	0.91	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	2	2.4	0.94	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	4	2.9	1.14	BR	SC
8/8/2007	Reach 1A	Coho	Juvenile	1	2	0.05	BR	SC

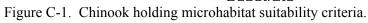
APPENDIX B

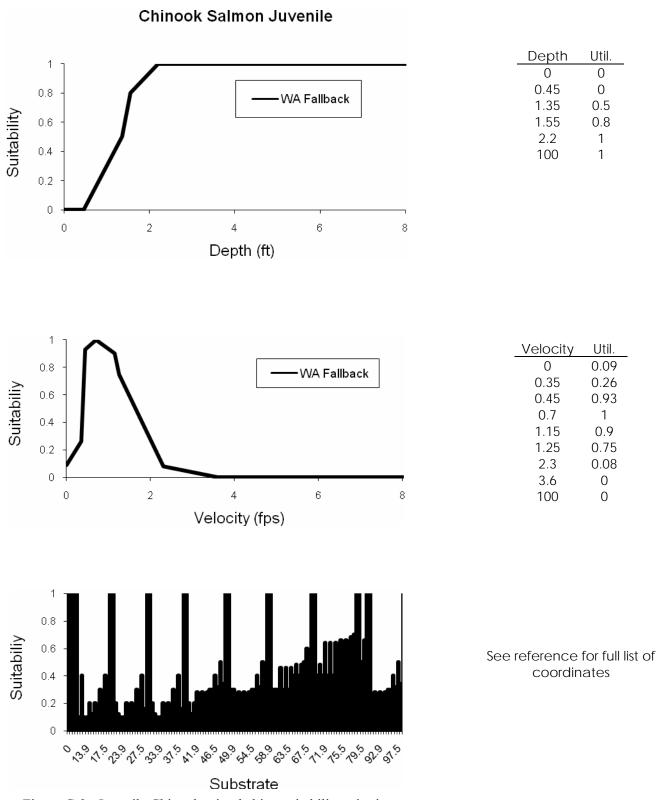

Frequency Distribution of HSC Curve Data Collected on the Sultan River, Washington

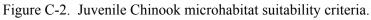

Juvenile trout microhabitat utilization (July/August 2007), Sultan River, Washington.

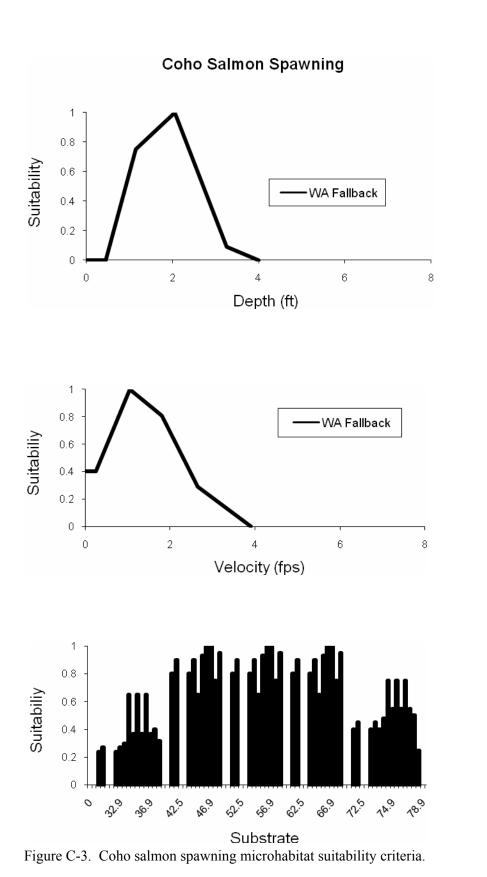
Juvenile coho microhabitat utilization (July/August 2007), Sultan River, Washington.


Steelhead spawning microhabitat utilization (July 2007 and April/May 2008), Sultan River, Washington.




Chinook spawning microhabitat utilization (September/October 2006 and 2007), Sultan River, Washington.


APPENDIX C


Habitat Suitability Criteria

Depth	Util.
0	0
0.45	0
1.15	0.75
2.05	1
3.25	0.09
4	0
100	0

Velocity

0

0.25

1.05

1.8

2.65

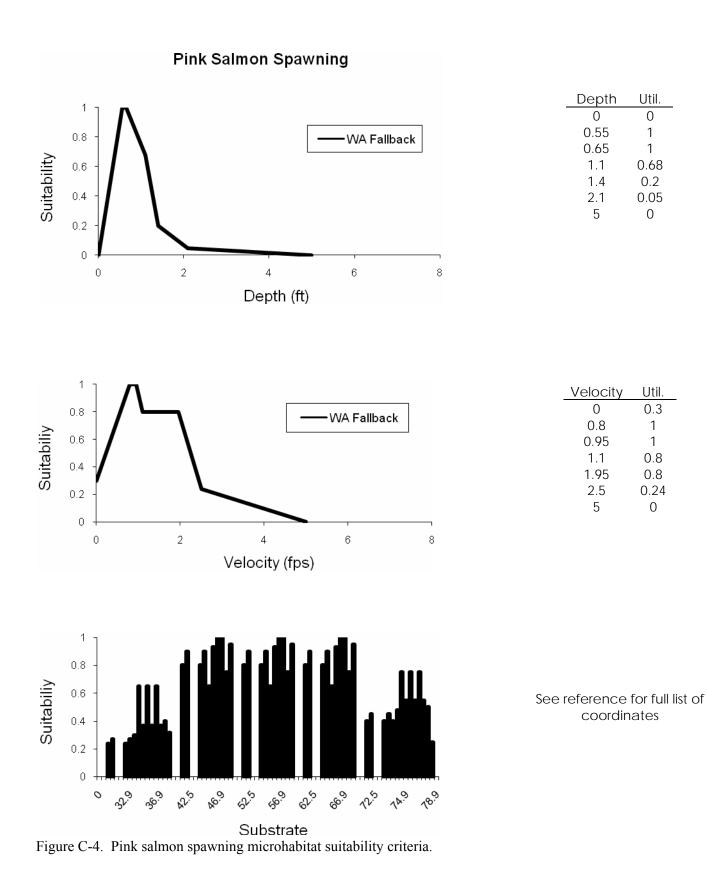
3.9

100

Util.

0.4

0.4


1

0.81 0.29

0

0

See reference for full list of coordinates

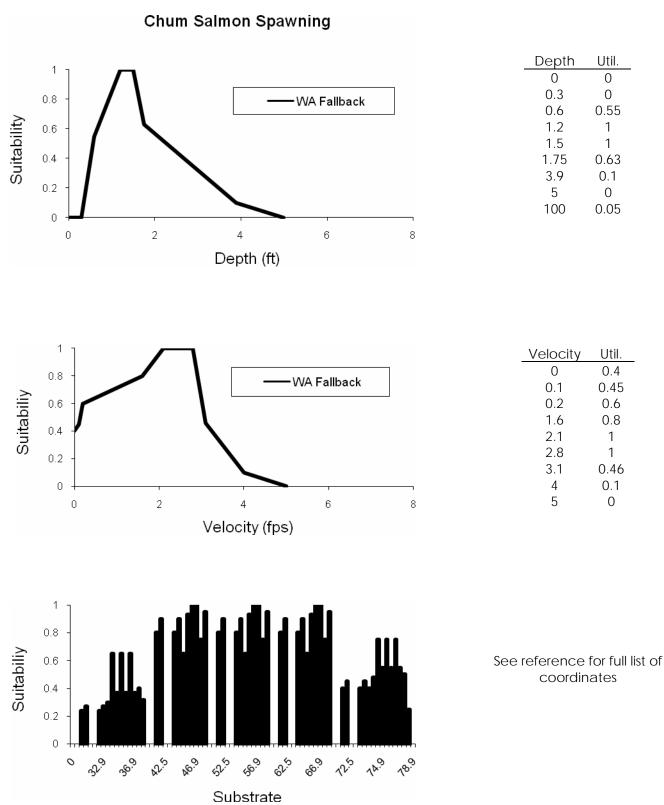
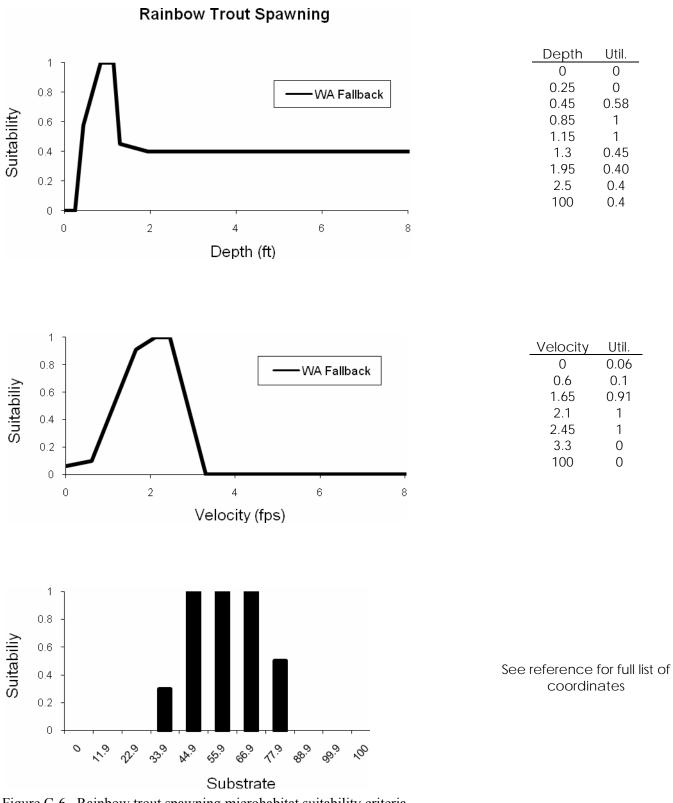
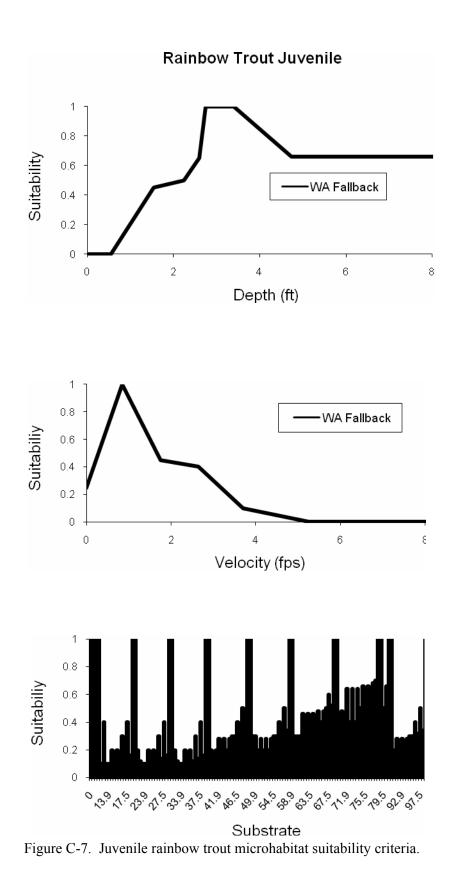




Figure C-5. Chum salmon spawning microhabitat suitability criteria.

Depth	Util.
0	0
0.55	0
1.55	0.45
2.25	0.5
2.6	0.65
2.75	1
3.4	1
4.75	0.66
100	0.66

Velocity	Util.
0	0.25
0.85	1
1.75	0.45
2.65	0.4
3.7	0.1
5.25	0
100	0

See reference for full list of coordinates

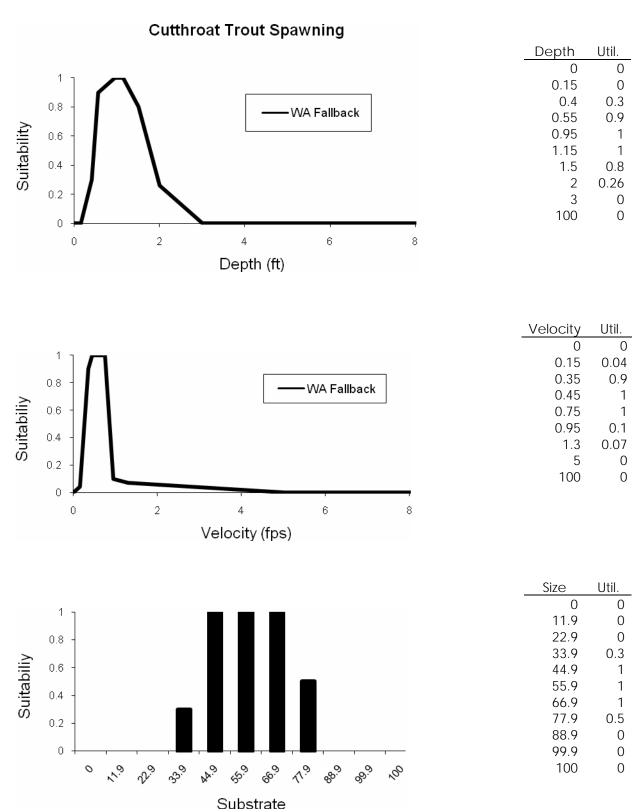


Figure C-8. Cutthroat trout spawning microhabitat suitability criteria.

APPENDIX C2

Technical Memorandum: Sultan River Instream Flow Study – HSC Preference Analysis and Revised Steelhead and Chinook Curves, July 31, 2008

Technical Memorandum

Date:	July 31, 2008	Project Number:	1628.05/MM102
To:	Keith Binkley – Snohomish	County PUD	
CC:	Aquatic Resources Working	Group	
From:	Dudley Reiser/Chiming Hua	ng – R2 Resource	e Consultants
Subject:	Sultan River Instream Flow Steelhead and Chinook Curv	5	ference Analysis and Revised

This technical memorandum (TM) presents and summarizes the results of additional analysis completed subsequent to the July 22, 2008 Habitat Suitability Curve review meeting. During that meeting, R2 (D. Reiser) presented the results of the HSC curve development process as described in R2 (2008), and discussed specific HSC curves proposed for use in the PHABSIM (Physical Habitat Simulation) modeling for the Sultan River instream flow study. There were three action items defined for R2 as a result of the meeting. These included:

- 1. Review and update curves for steelhead and Chinook based on adjusting the utilization data for availability following Washington Department of Fish and Wildlife and Washington Department of Ecology guidelines (WDFW/WDOE 2004).
- 2. Review and present other published curve sets related to steelhead velocity.
- 3. Provide data/notes regarding substrate and cover collected during microhabitat surveys.

This TM addresses these three action items.

As noted in the Meeting Summary, R2 had collected HSC data of several life stages of target fish species of interest in the Sultan River Instream Flow Study, including steelhead and Chinook salmon spawning, coho juvenile, and steelhead/trout fry. These data were subsequently used for developing habitat suitability curves which were based on habitat utilization. Because the resulting coho juvenile curves closely resembled the Washington State Fallback Curves (WDFW/WDOE 2004), and no data had been collected for a number of other species (i.e., chum and pink spawning, Chinook juvenile, steelhead juvenile), R2 proposed to use the Fallback curves of those species for the habitat-flow modeling.

Although deriving HSC curves from utilization data as was done by R2 for developing the proposed steelhead and Chinook spawning curves is a generally accepted approach (see Bovee 1986) and has been applied in other instream flow assessments (see attached list of HSC curves), the State of Washington requires consideration be given to adjusting such data based on availability. A preliminary evaluation of availability was presented by R2 during the July 22, 2008 meeting, for which utilization data collected from 33 redds from Reach 2 were displayed along with a frequency distribution of depths and velocities as predicted at 170 cfs, as well as measured during field surveys in which flows were 120 cfs and 240 cfs. The preliminary results indicated that some, albeit relatively few, velocities and depths greater than or equal to those measured over the redds would be available within the channel. This prompted both WDFW and WDOE representatives at the meeting (Hal Beecher and Jim Pacheco) to request further analysis of the utilization data to account for availability, thereby developing preference curves. This was to be done following the WDFW/WDOE Instream Flow Study Guidelines (Guidelines) as presented in the WDFW/WDOE (2004; revised 2008) report. This TM provides the results of that analysis for both steelhead and Chinook.

Action Item 1 – Review and update curves for steelhead and Chinook based on adjusting the utilization data for availability following Washington Department of Fish and Wildlife and Washington Department of Ecology (WDFW/WDOE 2004) guidelines.

This write-up summarizes the steps used in development of velocity and depth preference curves for 49 steelhead redds and 81 Chinook redds measured in Reach 2 of the Sultan River, WA, following the procedures outlined in the Guidelines. An additional 16 steelhead redds (above the 33 analyzed for the June 22 meeting) were included in this analysis to capture redds from both the upper and lower segments of Reach 2. The results are compared to the State Fallback curves, which for steelhead were derived from 25 redds measured in the Cedar River, Washington, and for Chinook were derived from 46 redds measured during two studies (rivers not named). The procedures are first described in detail for steelhead; the same procedures were used for the Chinook data, the results of which immediately follow the steelhead analysis.

For discussion purposes, it is noted that the Sultan River is divided into three operational reaches: Reach 1 – from the Skykomish River confluence to the Powerhouse; Reach 2 – from the Powerhouse to Diversion Dam; and Reach 3 – from the Diversion Dam to Culmback Dam. The analysis of both the steelhead and Chinook redds focused on two segments of Reach 2, an upper segment just below the Diversion Dam (RM 7.3-7.6), and a lower segment located about 0.5 miles above the powerhouse (RM 4.5-5.2). The lower segment of Reach 2 encompasses six of

the PHABSIM transects measured as part of the instream flow study. The District and WDFW have cooperatively conducted steelhead spawning surveys in this segment since 1993 in the Sultan River, ranking this section as heavily utilized by spawning steelhead each year. An average of about 25% of the steelhead spawning in the Sultan River reportedly occurs in this reach. (Pers. comm. K. Binkley – District 7/23/08). The upper segment is located just below the Diversion Dam and encompasses seven of the PHABSIM transects. The analysis of redd data was limited to Reach 2 because the flows in this reach were relatively stable during redd construction and measurement, whereas flows in Reach 1 were more variable as influenced by hydroelectric project operations. No anadromous fish are present in Reach 3.

Redd Surveys

Surveys to locate and measure steelhead and Chinook redds were conducted during the respective 2006, 2007, and 2008 spawning seasons within the upper and lower segments of Reach 2. The dates, numbers of redds measured, and locations of the surveys are summarized as follows.

Steelhead spawning surveys - total of 49 redds measured:

- (1) 6/7/2007: 1 redd in upper segment (RM 7.3-7.6)
- (2) 6/7/2007: 15 redds in lower segment (RM 4.5-5.2)
- (3) 4/23/2008: 18 redds in lower segment (RM 4.5-5.2)
- (4) 5/6/2008: 15 redds in lower segment (RM 4.5-5.2)

Chinook spawning surveys - total of 81 redds measured:

- (1) 10/2/2006: 15 redds in lower segment (RM 4.5-5.2)
- (2) 10/10/06: 15 redds in upper segment (RM 7.3-7.6)
- (3) 9/24/2007: 20 redds in lower segment (RM 4.5-5.2)
- (4) 10/12/2007: 31 redds in lower segment (RM 4.5-5.2)

Flow Estimates at Redd Locations

In general, most redds can still be detected for about 14 days after fish spawn. However, knowing the actual flow at the time the fish spawned is difficult unless the stream is gaged and even then, it can be difficult if flows are variable during the spawning period. However, if flows have remained relatively stable throughout the spawning period, than using the average flow of the 14 days prior to the redd observation and measurement as the surrogate to the flow at the time the redd was created, should be reasonable for evaluating habitat availability.

Steelhead Spawning Flows

For steelhead spawning, the USGS records indicated flows released from the Diversion Dam were held relatively constant at about 180 cfs for periods of time longer than 14 days prior to each survey date. Therefore, Q=180 cfs would represent a reasonable estimate of flows at the Diversion Dam for all three surveys.

Accretion flow and tributary inflow from Marsh and Chaplain creeks results in an increase in flow in a downstream direction. Based on daily flows provided by the District, R2 estimated average flows for the 14 days prior to the three steelhead spawning surveys in the lower segment of Reach 2 as follows:

- (1) Survey date: 6/7/2007 estimated flow = 271cfs
- (2) Survey date: 4/23/2008 estimated flow = 321 cfs
- (3) Survey date: 5/6/2008 estimated flow = 300cfs

Because the average of the three flows is 297 cfs (i.e., ≈ 300 cfs), and the variations of the flows are within ±10% of the average, R2 considered this as a representative flow for the lower site. Since redds were found in both the upper and lower segment of Reach 2, for purposes of computing the hydraulic characteristics (depths and velocities) available during steelhead spawning, R2 averaged the upper (180 cfs) and lower (300 cfs) flows. Thus, 240 cfs was used for defining the frequency of various depth and velocity intervals available across the 13 transects measured in the two segments. The distribution of depths and velocities from redd measurements taken at this flow was presented in one of the frequency distributions during the July 22, 2008 HSC review meeting.

Chinook Spawning Flows

For Chinook spawning, USGS records indicated that flows below the Diversion Dam ranged between 140 cfs and 180 cfs during the spawning seasons in 2006 and 2007. The average flows for the 14 days prior to the spawning redd surveys were:

- (1) Survey date: 10/2/2006 estimated flow = 160cfs
- (2) Survey date: 10/10/06 estimated flow = 162cfs
- (3) Survey date: 9/24/2007 estimated flow = 143 cfs
- (4) Survey date: 10/12/2007 estimated flow = 173cfs

As for steelhead, accretion and tributary inflow results in an increase in flow in the lower portions of Reach 2. The District estimated daily flows at the lower segment by subtracting the

R2 Resource Consultants	July 31, 2008
1628.05/MM102	Page 5

flow released from the Powerhouse from the flows at the USGS gage just below the Powerhouse. Accordingly, the average flows for the 14 days prior to the spawning redd surveys were estimated as follows:

- (1) Survey date: 10/2/2006 estimated flow = 206 cfs
- (2) Survey date: 10/10/06 estimated flow = 194 cfs
- (3) Survey date: 9/24/2007 estimated flow = 203 cfs
- (4) Survey date: 10/12/2007 estimated flow = 255 cfs

Since redds were measured in both the upper and lower segments of Reach 2, R2 applied the same averaging approach as used for steelhead for identifying the flow to be used for defining the availability of hydraulic characteristics during the period of spawning. Thus, the upper and lower flows were averaged for each of the four survey periods resulting in the following four flow estimates: 183 cfs (survey date 10/2/08, average of 160 cfs and 206 cfs); 178 cfs (survey date 10/10/08, average of 162 cfs and 194 cfs); 173 cfs (survey date 9/24/08, average of 143 cfs and 203 cfs); and 214 cfs (survey date 10/12/08, average of 173 cfs and 255 cfs). The average of these four flows (Q=187 cfs) was then used to define the hydraulics related to the Chinook redd surveys.

Data Analysis

Tables 1a and 1b and 2a and 2b summarize the hydraulics of all 13 transects in Reach 2 as determined for flows of 240 cfs for steelhead and 187 cfs for Chinook. The hydraulics (availability of depths and velocities) for 240 cfs were taken directly from the data surveyed under a measured flow at 238 cfs, while the hydraulics for 187 cfs were derived from the hydraulic modeling output. The hydraulic data were sorted and placed in bins with 0.1ft increments for depth and 0.1ft/s increments for velocity. The range of the bin size is shown in the first two columns (Column 1 and 2) of the tables.

Column 3 (Freq) is the number of verticals (i.e., velocity and depth measuring stations) of all 13 transects with hydraulics falling within the bin range. Column 4 shows the percentage of the total wetted surface area in Reach 2 for the verticals in Column 3. Table 3 lists the weighting factors for each of the 13 transects in Reach 2 that includes 6 in the lower Study site and 7 in the upper Study site. A weighting factor is the ratio of stream length the transect represents (based on habitat mapping completed by Stillwater Sciences [2008]) to the total stream length in Reach 2. The stream length a transect represents is the total stream length multiplied by the weighting factor. For example, Transect 5 in the lower segment of Reach 2 has a weighting factor of 14.8%, which would translate to a stream length of 5 miles $\times 14.8\% = 0.74$ mile, where 5 miles

is the total stream length in Reach 2. The wetted surface area each vertical represents is the width of the vertical multiplied by the weighted length of the transect.

Utilization (Col 5) shows the number of redd observations in each bin range, which total 49 for steelhead and 81 for Chinook. The data indicate that steelhead spawn in water depths between 0.8 ft and 3.5 ft, and in velocities between 0.7 ft/s and 3.4 ft/s. For Chinook, the spawning depth ranges between 0.7ft and 3.7 ft and velocity ranges from 0.5 ft/s to 3.4 ft/s. The last column, Column 6 (E) is the Expected number of redd depth or velocity measurements that would be found within each of the bins if the distribution of redds was proportional to the frequency with which depths and velocities occur. The Expected number is the product of Area % and Utilization.

Preference Curve Development

R2 followed the recommended Guidelines for calculating preference curves, which states that the bins be combined using the criterion that the combined Expected values be at least 5. Tables 4 and 5 show the velocity and depth preference curve calculations for steelhead and Chinook, respectively. The first two columns in each table are the ranges of each of the combined E (Expected) values, and the third and fourth columns are, respectively, the combined E values and the actual number of redd observations O. The last two columns show the ratio of O to E and the normalized value of O/E by the maximum value of O/E.

Steelhead Analysis

For steelhead, the normalized values in Table 4 are plotted in Figures 1 and 2 as the calculated (a) line for velocity and depth preferences, respectively; the proposed steelhead spawning velocity and depth Preference curves are depicted as the (b) line. The plots show optimal velocity ranges between 1.25 ft/s and 2 ft/s and optimal depths between 1.25ft and 2.5ft. Figures 3(a) and 3(b) compare the State Fallback curves and the proposed preference curves; Figures 4(a) and 4(b) compare the proposed preference curve with the original modified curve based on utilization data alone that was originally proposed and presented during the agency meeting on 7/22/08. The coordinates of the State Fallback curve, original modified curve, and proposed Preference curve are listed in Table 6(a) for velocity and Table 6(b) for depth.

Overall, the ascending limb and plateau of the proposed velocity Preference curve are identical to those of the original modified curve (Figure 4[a]). However, the descending limb of the Preference curve now encompasses a slightly wider range of velocities, with the zero intersection at 5 fps, rather than 4 fps as was indicated under the original modified curves. This change was

R2 Resource Consultants	July 31, 2008
1628.05/MM102	Page 7

warranted based on the calculated velocity preference curve as noted in Figure 1a. Analysis of HSC depth data adjusted for availability resulted in a Preference curve that matched the original proposed modified curve based on utilization data (Figure 4[b]), and it remains as the suggested curve for use in the habitat-flow modeling.

Chinook Analysis

The normalized values for the Chinook data in Table 5 are plotted in Figure 5 and Figure 6 as the calculated (a) line for velocity and depth preferences, respectively. Figures 5(b) and 6(b) are the proposed preference curves for velocity and depth are depicted as the (b) line. The plots indicate optimal velocity ranges between 1.2 ft/s and 2.5 ft/s and optimal depths between 1.2 ft and 2.4 ft. Figures 7(a) and 7(b) compare the State Fallback curves with the proposed Preference curves for Chinook. Figures 8(a) and 8(b) compare the proposed curve with the original modified curve based on utilization data alone that was originally proposed and presented during the agency meeting on 7/22/08. The coordinates of the State fallback curve, original modified curve, and proposed Preference curves are listed in Table 7(a) for velocity and Table 7(b) for depth.

The resulting velocity Preference analysis resulted in a curve that encompassed a slightly wider range of velocities on the ascending limb of the curve compared with the original proposed modified, and a descending portion of the curve that was just slightly wider than the original proposed modified curve (Figure 8a) and slightly narrower than the Fallback curve (Figure 7a). The depth Preference curve closely matched the original proposed modified curve (Figure 8b) but differs from the Fallback curve in having both a narrower optimal depth range as well as depth non-limiting (suitability = 0.5) at depths ≥ 2.7 ft (Figure 6b).

Proposed HSC Curves

Based on the above analysis of utilization and availability, R2 suggests adoption of the steelhead and Chinook spawning Preference curves for both velocity and depth (Figures 1 and 2, and 5 and 6) for use in the habitat – flow modeling of the instream flow study for the Sultan River. These curves would be used along with those depicted by the State Fallback curves for other species and life stages of interest, as noted during the July 22, 2008 ARWG meeting.

Action Item 2 – Review and present other published curve sets related to steelhead velocity

For comparative purposes, R2 compiled HSC velocity curves for steelhead spawning that have been used in a number of other instream flow studies (see Attachment A). These curve sets included Category 1 (Literature), Category 2 (Utilization), and Category 3 (Preference) type curve sets, as defined by Bovee (1986). For display purposes, the curve sets are divided into two

classes – those for which the optimum velocity range extended up to 3 fps, and those for which the range was greater than 3 fps. Coordinates for each of these curves and source references are also included.

Page 8

Action Item 3 – Provide data/notes regarding substrate and cover collected during microhabitat surveys

Data and notes pertaining to depths, velocities, substrate composition and adjoining cover types that were collected during the spawning and juvenile HSC surveys are provided in Attachment B. Copies of field data are provided in Attachment C.

Literature Cited

- Bovee, K. D. 1986. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. U.S. Geological Survey, Fort Collins Science Center. 235 pp.
- R2 Resource Consultants, Inc. 2008. Proposed Habitat Suitability Criteria (HSC) Curves for Application in Habitat – Flow Modeling for the Sultan River Instream Flow Study – RSP 3. Prepared for Public Utility District No. 1 of Snohomish County, and City of Everett, Washington.
- Stillwater Sciences and Meridian Environmental. 2008a. Study Plan 18: riverine, riparian and wetland habitat assessment, technical report. Prepared for Snohomish County Public Utility District No. 1.
- Washington Department of Fish and Wildlife and Washington State Department of Ecology. 2004. Instream flow study guidelines: technical and habitat suitability issues, Updated, February 2, 2008.

		. ,			
(1)	(2)	(3)	(4)	(5)	(6)
Velocity I	Bin Range		Area %		E
Lower	Upper	Freq	(A)	Utilization	(=N A)
0	0.09	21	5.5%	0	2.70
0.1	0.19	15	3.9%	0	1.91
0.2	0.29	18	4.7%	0	2.30
0.3	0.39	16	4.2%	0	2.06
0.4	0.49	22	5.7%	0	2.79
0.5	0.59	11	2.9%	0	1.42
0.6	0.69	13	3.4%	0	1.67
0.7	0.79	16	4.2%	2	2.06
0.8	0.89	12	3.2%	0	1.57
0.9	0.99	13	3.4%	0	1.67
1	1.09	13	3.4%	0	1.67
1.1	1.19	11	2.8%	1	1.37
1.2	1.29	22	5.7%	2	2.79
1.3	1.39	6	1.6%	3	0.78
1.4	1.49	4	1.0%	4	0.49
1.5	1.59	8	2.1%	6	1.03
1.6	1.69	8	2.1%	4	1.03
1.7	1.79	12	3.1%	2	1.52
1.8	1.89	11	2.8%	1	1.37
1.9	1.99	6	1.6%	7	0.78
2	2.09	9	2.3%	1	1.13
2.1	2.19	10	2.6%	2	1.27
2.2	2.29	7	1.8%	0	0.88
2.3	2.39	9	2.3%	3	1.13
2.4	2.49	8	2.1%	2	1.03
2.5	2.59	6	1.6%	2	0.78
2.6	2.69	10	2.6%	2	1.27
2.7	2.79	6	1.6%	0	0.78
2.8	2.89	4	1.0%	0	0.49

Table 1(a).Summary of velocity availability and utilization for steelhead spawning at Q=240
cfs in the Sultan River. (N=49).

(1)	(2)	(3)	(4)	(5)	(6)
Velocity I	Bin Range		Area %		E
Lower	Upper	Freq	(A)	Utilization	(=N A)
2.9	2.99	2	0.5%	1	0.25
3	3.09	5	1.3%	1	0.64
3.1	3.19	6	1.5%	0	0.74
3.2	3.29	4	1.0%	2	0.49
3.3	3.39	7	1.8%	1	0.88
3.4	3.49	5	1.3%	0	0.64
3.5	3.59	3	0.8%	0	0.39
3.6	3.69	3	0.8%	0	0.39
3.7	3.79	8	2.0%	0	0.98
3.8	3.89	3	0.8%	0	0.39
3.9	3.99	2	0.5%	0	0.25
4	4.09	2	0.5%	0	0.25
4.1	4.19	1	0.3%	0	0.15
4.2	4.29	2	0.5%	0	0.25
4.3	4.39	1	0.3%		0.15
4.4	4.49	1	0.3%		0.15
4.5	4.59	0	0.0%		0.00
4.6	4.69	1	0.3%		0.15
4.7	4.79	1	0.3%		0.15
4.8	4.89	0	0.0%		0.00
4.9	4.99	0	0.0%		0.00
5	5.09	0	0.0%		0.00
5.1	5.19	1	0.3%		0.15
5.2	5.29	0	0.0%		0.00
5.3	5.39	0	0.0%		0.00
5.4	5.49	0	0.0%		0.00
5.5	5.59	0	0.0%		0.00

Table 1(a).Summary of velocity availability and utilization for steelhead spawning at Q=240
cfs in the Sultan River. (N=49).

(1)	(2)	(3)	(4)	(5)	(6)
Depth B	in Range		Area %		E
Lower	Upper	Freq	(A)	Utilization	(=N A)
0	0.09	3	0.8%		0.39
0.1	0.19	7	1.9%		0.93
0.2	0.29	5	1.3%		0.64
0.3	0.39	8	2.1%		1.03
0.4	0.49	11	2.9%		1.42
0.5	0.59	15	3.9%		1.91
0.6	0.69	9	2.4%	0	1.18
0.7	0.79	16	4.2%	0	2.06
0.8	0.89	11	2.9%	1	1.42
0.9	0.99	20	5.3%	2	2.60
1	1.09	11	2.9%	0	1.42
1.1	1.19	18	4.7%	3	2.30
1.2	1.29	14	3.6%	2	1.76
1.3	1.39	14	3.7%	5	1.81
1.4	1.49	13	3.4%	2	1.67
1.5	1.59	15	3.9%	1	1.91
1.6	1.69	11	2.8%	2	1.37
1.7	1.79	15	3.9%	3	1.91
1.8	1.89	10	2.6%	4	1.27
1.9	1.99	8	2.1%	2	1.03
2	2.09	11	2.8%	2	1.37
2.1	2.19	12	3.1%	3	1.52
2.2	2.29	9	2.3%	3	1.13
2.3	2.39	7	1.8%	3	0.88
2.4	2.49	14	3.6%	3	1.76
2.5	2.59	15	3.9%	4	1.91
2.6	2.69	16	4.1%	2	2.01
2.7	2.79	15	3.8%	0	1.86
2.8	2.89	1	0.3%	0	0.15

Table 1(b).Summary of depth availability and utilization for steelhead spawning at Q=240
cfs in the Sultan River. (N=49)

(1)	(2)	(3)	(4)	(5)	(6)
Depth B	in Range		Area %		E
Lower	Upper	Freq	(A)	Utilization	(=N A)
2.9	2.99	5	1.3%	0	0.64
3	3.09	13	3.3%	0	1.62
3.1	3.19	3	0.8%	1	0.39
3.2	3.29	5	1.3%	0	0.64
3.3	3.39	3	0.8%	0	0.39
3.4	3.49	6	1.5%	0	0.74
3.5	3.59	2	0.5%	1	0.25
3.6	3.69	0	0.0%	0	0.00
3.7	3.79	3	0.8%	0	0.39
3.8	3.89	1	0.3%	0	0.15
3.9	3.99	0	0.0%	0	0.00
4	4.09	1	0.3%	0	0.15
4.1	4.19	1	0.3%	0	0.15
4.2	4.29	0	0.0%	0	0.00
4.3	4.39	0	0.0%	0	0.00
4.4	4.49	3	0.8%	0	0.39
4.5	4.59	0	0.0%	0	0.00
4.6	4.69	0	0.0%	0	0.00
4.7	4.79	1	0.3%	0	0.15
4.8	4.89	1	0.3%	0	0.15
4.9	4.99	0	0.0%	0	0.00
5	5.09	0	0.0%	0	0.00
5.1	5.19	0	0.0%	0	0.00
5.2	5.29	2	0.5%		0.25
5.3	5.39	0	0.0%		0.00
5.4	5.49	0	0.0%		0.00
5.5	5.59	1	0.3%		0.15

Table 1(b).Summary of depth availability and utilization for steelhead spawning at Q=240
cfs in the Sultan River. (N=49)

(1)	(2)	(3)	(4)	(5)	(6)
Velocity I	Bin Range		Area %		E
Lower	Upper	Freq	(A)	Utilization	(=N A)
0	0.09	17	4.5%	0	3.65
0.1	0.19	19	5.1%	0	4.13
0.2	0.29	17	4.5%	0	3.65
0.3	0.39	22	5.8%	0	4.70
0.4	0.49	14	3.7%	0	3.00
0.5	0.59	20	5.2%	1	4.21
0.6	0.69	15	4.0%	2	3.24
0.7	0.79	14	3.7%	2	3.00
0.8	0.89	18	4.7%	1	3.81
0.9	0.99	16	4.2%	5	3.40
1	1.09	19	5.0%	1	4.05
1.1	1.19	14	3.7%	3	3.00
1.2	1.29	7	1.8%	2	1.46
1.3	1.39	10	2.6%	7	2.11
1.4	1.49	6	1.6%	4	1.30
1.5	1.59	11	2.9%	6	2.35
1.6	1.69	14	3.6%	2	2.92
1.7	1.79	12	3.2%	6	2.59
1.8	1.89	11	2.9%	3	2.35
1.9	1.99	10	2.6%	8	2.11
2	2.09	15	3.9%	1	3.16
2.1	2.19	7	1.8%	1	1.46
2.2	2.29	6	1.6%	4	1.30
2.3	2.39	4	1.1%	5	0.89
2.4	2.49	9	2.4%	1	1.94
2.5	2.59	11	2.9%	4	2.35
2.6	2.69	7	1.8%	3	1.46
2.7	2.79	5	1.3%	2	1.05
2.8	2.89	7	1.8%	0	1.46

Table 2(a).Summary of velocity availability and utilization for Chinook spawning at Q=187
cfs in the Sultan River. (N=81)

(1)	(2)	(3)	(4)	(5)	(6)
Velocity I	Bin Range		Area %		Е
Lower	Upper	Freq	(A)	Utilization	(=N A)
2.9	2.99	6	1.6%	1	1.30
3	3.09	1	0.3%	0	0.24
3.1	3.19	4	1.0%	3	0.81
3.2	3.29	0	0.0%	1	0.00
3.3	3.39	1	0.3%	2	0.24
3.4	3.49	1	0.3%	0	0.24
3.5	3.59	2	0.5%	0	0.41
3.6	3.69	2	0.5%	0	0.41
3.7	3.79	1	0.3%	0	0.24
3.8	3.89	1	0.3%	0	0.24
3.9	3.99	0	0.0%	0	0.00
4	4.09	1	0.3%	0	0.24
4.1	4.19	1	0.3%	0	0.24
4.2	4.29	0	0.0%	0	0.00
4.3	4.39	0	0.0%	0	0.00
4.4	4.49	1	0.3%	0	0.24
4.5	4.59	0	0.0%	0	0.00
4.6	4.69	0	0.0%	0	0.00
4.7	4.79	0	0.0%	0	0.00
4.8	4.89	0	0.0%	0	0.00
4.9	4.99	1	0.3%	0	0.24
5	5.09	0	0.0%	0	0.00
5.1	5.19	0	0.0%	0	0.00

Table 2(a).Summary of velocity availability and utilization for Chinook spawning at Q=187
cfs in the Sultan River. (N=81)

Depth Bin Lower 0 0.1 0.2	Upper 0.09 0.19	Freq 3	Area % (A)	Utilization	E
0 0.1	0.09 0.19			Utilization	
0.1	0.19	3			(=N A)
			0.8%	0	0.65
0.2		12	3.2%	0	2.59
	0.29	11	2.9%	0	2.35
0.3	0.39	10	2.7%	0	2.19
0.4	0.49	15	4.0%	0	3.24
0.5	0.59	12	3.2%	0	2.59
0.6	0.69	17	4.5%	0	3.65
0.7	0.79	9	2.4%	3	1.94
0.8	0.89	10	2.7%	1	2.19
0.9	0.99	26	6.9%	5	5.59
1	1.09	15	4.0%	2	3.24
1.1	1.19	12	3.2%	2	2.59
1.2	1.29	18	4.7%	3	3.81
1.3	1.39	16	4.3%	2	3.48
1.4	1.49	11	2.9%	6	2.35
1.5	1.59	17	4.5%	1	3.65
1.6	1.69	10	2.6%	4	2.11
1.7	1.79	12	3.1%	10	2.51
1.8	1.89	14	3.7%	2	3.00
1.9	1.99	12	3.2%	7	2.59
2	2.09	11	2.9%	6	2.35
2.1	2.19	10	2.6%	8	2.11
2.2	2.29	7	1.8%	1	1.46
2.3	2.39	19	5.0%	4	4.05
2.4	2.49	9	2.3%	5	1.86
2.5	2.59	7	1.8%	1	1.46
2.6	2.69	8	2.1%	2	1.70
2.7	2.79	6	1.5%	0	1.22

Table 2(b).	Summary of depth availability and utilization for Chinook spawning at Q=187
	cfs in the Sultan River. (N=81)

(1)	(2)	(3)	(4)	(5)	(6)
Depth B	in Range		Area %		E
Lower	Upper	Freq	(A)	Utilization	(=N A)
2.9	2.99	7	1.8%	1	1.46
3	3.09	6	1.6%	0	1.30
3.1	3.19	3	0.8%	0	0.65
3.2	3.29	2	0.5%	0	0.41
3.3	3.39	2	0.5%	0	0.41
3.4	3.49	0	0.0%	2	0.00
3.5	3.59	2	0.5%	1	0.41
3.6	3.69	1	0.3%	1	0.24
3.7	3.79	1	0.3%	0	0.24
3.8	3.89	0	0.0%	0	0.00
3.9	3.99	0	0.0%	0	0.00
4	4.09	1	0.3%	0	0.24
4.1	4.19	0	0.0%	0	0.00
4.2	4.29	1	0.3%	0	0.24
4.3	4.39	2	0.5%	0	0.41
4.4	4.49	0	0.0%	0	0.00
4.5	4.59	0	0.0%	0	0.00
4.6	4.69	0	0.0%	0	0.00
4.7	4.79	1	0.3%	0	0.24
4.8	4.89	1	0.3%	0	0.24
4.9	4.99	0	0.0%	0	0.00
5	5.09	0	0.0%	0	0.00
5.1	5.19	2	0.5%	0	0.41

Table 2(b).Summary of depth availability and utilization for Chinook spawning at Q=187
cfs in the Sultan River. (N=81)

Transect Number	Weighting Factor
Lower TR-1	1.3%
Lower TR-2	5.9%
Lower TR-3	1.3%
Lower TR-4	15.3%
Lower TR-5	14.8%
Lower TR-6	15.3%
Upper TR-1	19.2%
Upper TR-2	10.3%
Upper TR-3	2.4%
Upper TR-4	2.4%
Upper TR-5	7.0%
Upper TR-6	2.4%
Upper TR-7	2.4%

Table 3.	Transect weighting factors are determined from habitat mapping (Stillwater
	Sciences 2008).

Velocity	Velocity Range		Observations		Normalized
Lower	Upper	Е	0	O/E	O/E
0	0.29	6.91	0	0.00	0.00
0.3	0.59	6.27	0	0.00	0.00
0.6	0.89	5.29	2	0.38	0.12
0.9	1.29	7.5	3	0.40	0.12
1.3	1.89	6.22	20	3.22	1.00
1.9	2.39	5.19	13	2.50	0.78
2.4	3.09	5.24	8	1.53	0.47
3.1	3.99	5.15	3	0.58	0.18
>4		1.39	0	0.00	0.00

Table 4(a). Velocity preference calculation for steelhead spawning.

Table 4(b). Depth preference calculation for steelhead spawning.

Depth	Depth Range		Observations		Normalized
Lower	Upper	E	0	O/E	O/E
0	0.59	6.32	0	0.00	0.00
0.6	0.99	7.25	3	0.41	0.20
1	1.29	5.49	5	0.91	0.43
1.3	1.59	5.39	8	1.48	0.71
1.6	1.99	5.59	11	1.97	0.94
2	2.49	6.66	14	2.10	1.00
2.5	2.79	5.78	6	1.04	0.49
2.8	3.79	5.19	2	0.39	0.18
>3.8		1.52	0	0.00	0.00

Velocity	Range	Combined	Observations		Normalized
Lower	Upper	E	Ο	O/E	O/E
0	0.19	7.78	0	0.00	0.00
0.2	0.39	8.34	0	0.00	0.00
0.4	0.59	7.21	1	0.14	0.05
0.6	0.79	6.24	4	0.64	0.24
0.8	0.99	7.21	6	0.83	0.32
1	1.19	7.05	4	0.57	0.22
1.2	1.59	7.21	19	2.64	1.00
1.6	1.79	5.51	8	1.45	0.55
1.8	2.09	7.61	12	1.58	0.60
2.1	2.49	5.59	11	1.97	0.75
2.5	2.79	6.32	9	1.42	0.54
2.8	4.99	5.1	7	1.37	0.52
>5		0	0	0.00	0.00

Table 5(a). Velocity preference calculation for	Chinook spawning.
---	-------------------

Table 5(b). Depth preference calculation for Chinook spawning.

Depth	Range	Combined	Observations		Normalized
Lower	Upper	Е	0	O/E	O/E
0	0.29	5.59	0	0.00	0.00
0.3	0.49	5.43	0	0.00	0.00
0.5	0.69	6.24	0	0.00	0.00
0.7	0.99	9.72	9	0.93	0.31
1	1.19	5.83	4	0.69	0.23
1.2	1.39	7.29	5	0.69	0.23
1.4	1.59	5.99	7	1.17	0.39
1.6	1.89	7.61	16	2.10	0.71
1.9	2.19	7.05	21	2.98	1.00
2.2	2.39	5.51	5	0.91	0.30
2.4	2.69	5.02	8	1.59	0.54
2.7	3.09	5.83	2	0.34	0.12
>3.1		4.13	4	0.97	0.33

WA F	allback	Origina	I Modified	Pro	posed
V(ft/s)	Preference	V(ft/s)	Preference	V(ft/s)	Preference
0.00	0.00	0.00	0.00	0.00	0.00
0.55	0.00	0.55	0.00	0.55	0.00
2.50	1.00	1.25	1.00	1.25	1.00
3.25	1.00	1.50	1.00	1.50	1.00
3.45	0.62	1.75	1.00	1.75	1.00
5.00	0.00	2.00	1.00	2.00	1.00
		2.50	0.50	2.70	0.50
		4.00	0.00	5.00	0.00

Table 6(a).Coordinates of State Fallback curve, original modified curve, and proposed
curve for steelhead spawning velocity preference.

Table 6(b).	Coordinates of State Fallback curve, original modified curve, and proposed
	curve for steelhead spawning depth preference.

WA Fa	allback	Original	Modified	Prop	osed
Depth (ft)	Preference	Depth (ft)	Preference	Depth (ft)	Preference
0.00	0.00	0.00	0.00	0.00	0.00
0.65	0.00	0.65	0.00	0.65	0.00
1.25	1.00	1.25	1.00	1.25	1.00
1.55	1.00	1.55	1.00	1.55	1.00
2.40	0.50	1.90	1.00	1.90	1.00
8.00	0.50	2.50	1.00	2.50	1.00
		3.00	0.50	3.00	0.50
		4.00	0.50	4.00	0.50
		8.00	0.50	8.00	0.50

WA F	allback	Origina	I Modified	Proposed		
V(ft/s)	Preference	V(ft/s)	Preference	V(ft/s)	Preference	
0.00	0.00	0.00	0.00	0.00	0.00	
0.50	0.00	0.50	0.00	0.55	0.00	
1.00	0.50	1.80	1.00	1.20	1.00	
1.75	1.00	2.10	1.00	1.50	1.00	
3.00	1.00	2.40	1.00	1.75	1.00	
4.00	0.00	3.40	0.30	2.50	1.00	
10.00	0.00	4.00	0.00	4.00	0.00	
		10.00	0.00			

Table 7(a). Coordinates of State Fallback curve, original modified curve, and proposed curve for Chinook spawning velocity preference.

Table 7(b). Coordinates of State Fallback curve, original modified curve, and proposed curve for Chinook spawning depth preference.

WA Fa	allback	Original	Modified	Prop	osed
Depth (ft)	Preference	Depth (ft) Preference		Depth (ft)	Preference
0.00	0.00	0.00	0.00	0.00	0.00
0.30	0.00	0.50	0.00	0.50	0.00
0.50	0.50	1.20	1.00	1.20	1.00
0.85	1.00	2.10	1.00	1.55	1.00
3.40	1.00	2.40	1.00	1.90	1.00
5.00	0.00	3.00	0.50	2.40	1.00
10.00	0.00	5.00	0.50	2.70	0.50
		8.00	0.50	4.00	0.50
		8.00	0.50	8.00	0.50

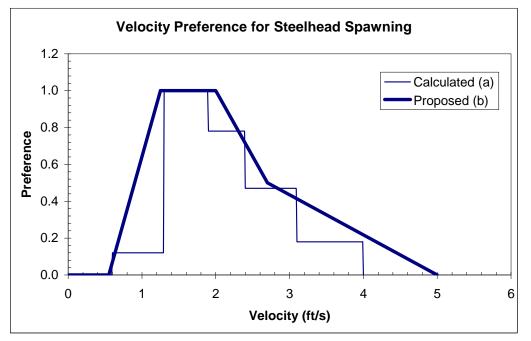


Figure 1. Calculated (a) and proposed (b) steelhead spawning velocity preference curves (N=49).

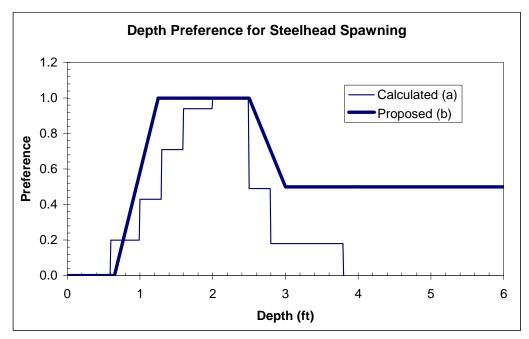


Figure 2. Calculated (a) proposed (b) steelhead spawning depth preference curves (N=49).

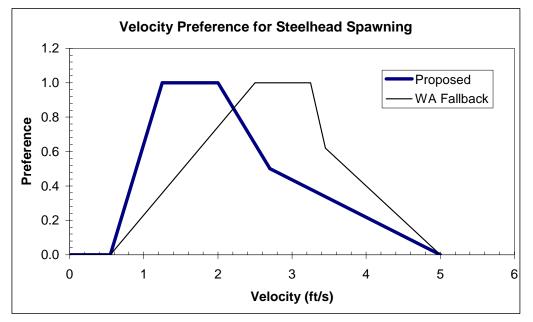


Figure 3(a). Comparison of proposed and State Fallback Preference curves for steelhead spawning velocity criteria.

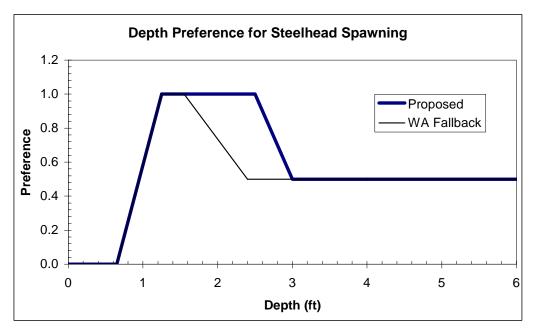


Figure 3(b). Comparison of proposed and State Fallback Preference curves for steelhead spawning depth criteria.

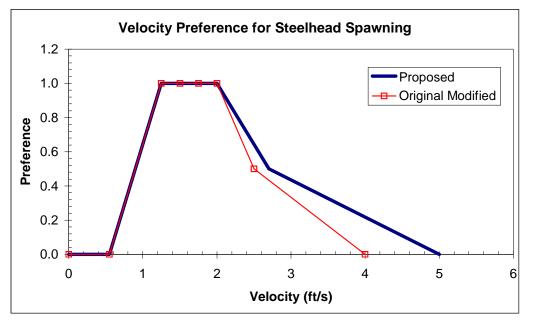


Figure 4(a). Comparison of proposed preference and original modified utilization steelhead spawning velocity curves.

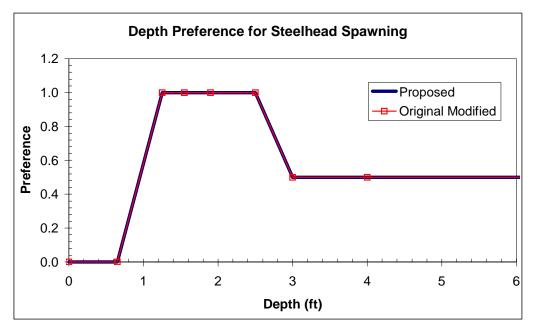


Figure 4(b). Comparison of proposed preference and original modified utilization steelhead spawning depth curves.

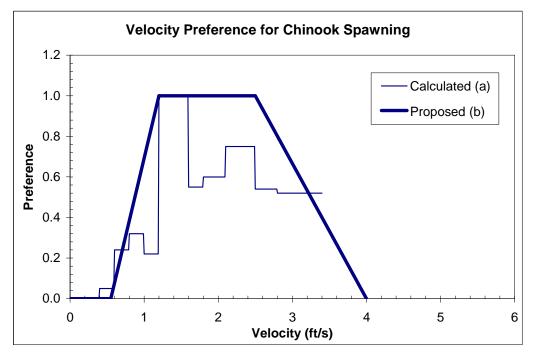


Figure 5. Chinook spawning velocity preference (a) calculated (b) proposed.

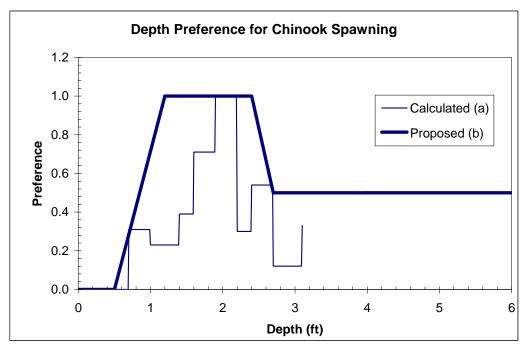


Figure 6. Chinook spawning depth preference (a) calculated (b) proposed.

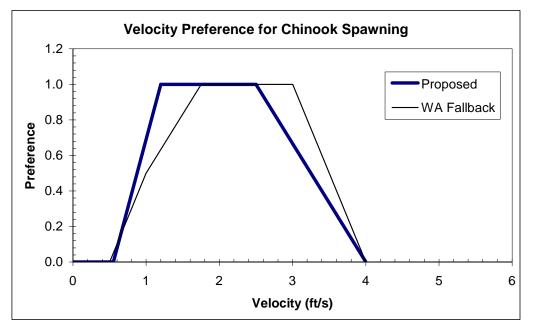


Figure 7(a). Comparison of proposed and State Fallback Preference curves for Chinook spawning velocity criteria.

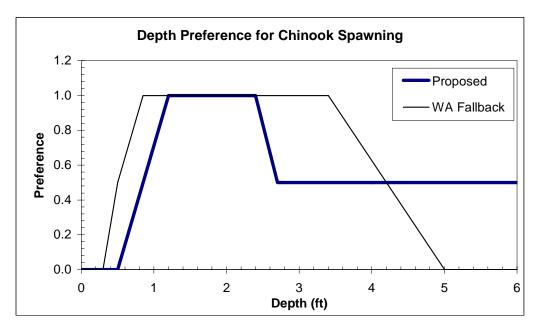


Figure 7(b). Comparison of proposed and State Fallback Preference curves for Chinook spawning depth criteria.

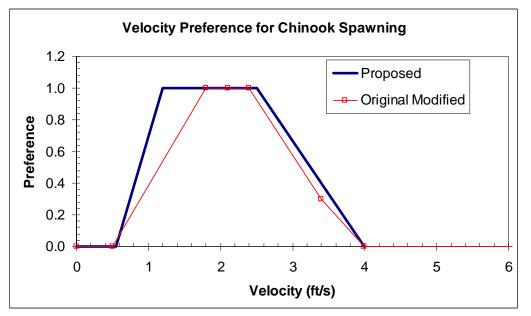


Figure 8(a). Comparison of proposed preference and original modified utilization Chinook spawning velocity curves.

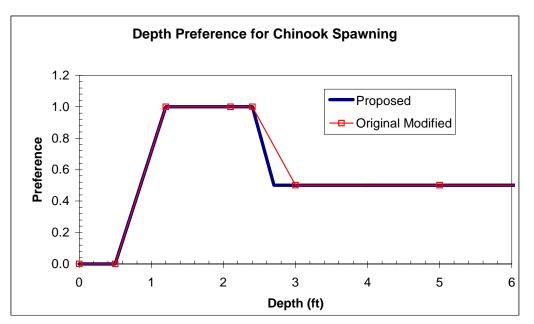
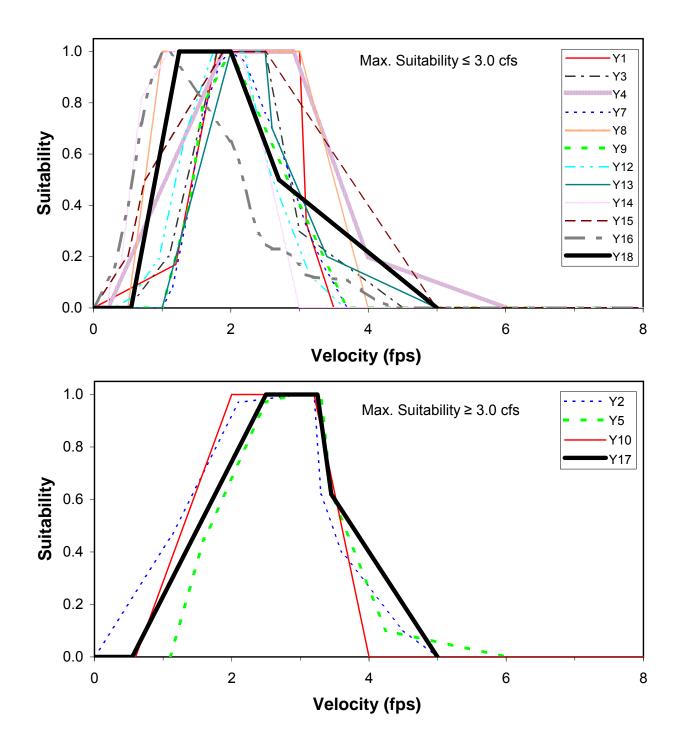



Figure 8(b). Comparison of proposed preference and original modified utilization Chinook spawning depth curves.

ATTACHMENT 1

Steelhead Spawning Velocity Curves

- Source: Y1 Sams and Pearson 1963
 - Y2 DES 1999
 - Y3 Hosey 1986
 - Y4 R2 Resource Consultants 1998
 - Y5 WDFW 1996
 - Y6 Hampton 1988
 - Y7 -- Beak Consultants 1985; Bovee 1978; USFWS 1987
 - Y8 Idaho USGS
 - Y9 USFS 1989
 - Y10- R2 Resource Consultants
 - Y11- Sitka Electric Dept 2005
 - Y12 Reiser 1986; Reiser et al 1988
 - Y13 Hosey & Associates 1986
 - Y14 Hampton 1988
 - Y15 WDFW 1987
 - Y16 Hampton 1997
 - Y17 WDFW, WDOE 2004, 2008
 - Y18 R2 Resource Consultants 2008

- Location: Y1 Oregon
 - Y2 Skagit River, WA
 - Y3 White River, WA
 - Y4 Lostine River, Oregon; Ward Creek, AK
 - Y5 Fallback curves, Cedar R., WA
 - Y6 California, Utilization Cat. II
 - Y7 Sandy River, Oregon
 - Y8 Upper Salmon Basin, ID
 - Y9 Western U.S., GAWS, Cat. II
 - Y10-Newhalem Creek, WA
 - Y11- proposed curve, Sawmill Creek, AK
 - Y12 Idaho
 - Y13 Washington, Suitability, Cat. I
 - Y14 California, Pref. Cat. III
 - Y15 Washington, Preference, Cat. III
 - Y16 Lower Trinity River
 - Y17 Washington State
 - Y18 Sultan River, WA

х	Y1	Y2	S Y3	teelh Y4	read Y5	Spa Y6	wnin Y7	g Su Y8	itabil _{Y9}	ity S Y10	CORE Y11	s for Y12	Velc Y13	City Y14	Y15	Y16	Y17	Y18
0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.25						0.16					0.18	0.00		0.10		0.15		
0.40						0.10						0.00		0.17		0.10		
0.50			0.00					0.00							0.20	0.39		
0.55										0.00		0.04				0.55	0.00	0.00
0.60										0.00	0.36					0.55		
0.70											0.00			0.82		0.72		
0.75											0.64				0.50			
0.80						0.87								0.01		0.85		
0.90												0.19		0.91		0.94		
1.00						0.98	0.00	1.00	0.00			0.15	0.00			0.99		
1.10		0.45	0.20		0.00	1.00								1.00		1.00		
1.15							0.08											
1.20 1.25	0.17										1.00							1.00
1.25											1.00	0.69						1.00
1.40							0.40		0.40			2.00						
1.50							0.60											1.00
1.60					0.45		0.74		0.80									
1.65 1.75							0.80					1.00						1.00
1.80	1.00		1.00									1.00						1.00
1.85							0.96											
1.90				1.00											1.00			
2.00							1.00		1.00	1.00			1.00			0.65		1.00
2.10		0.97	1.00			0.58								1.00		0.59		
2.20							0.96					1.00		0.94		0.48		
2.25 2.30							0.90					0.92				0.37		
2.30						0.28	0.90									0.37		
2.50			1.00		0.97	0.25	0.76						1.00		1.00	0.25	1.00	
2.55												0.54						
2.60							0.04						0.70			0.23		0.50
2.70 2.75						0.23	0.64									0.23		0.50
2.80						0.20										0.22		
2.9				1.00	1.00											0.20		
3.00	1.00	1.00	0.30				0.00	1.00	0.40		0.30			0.00		0.17		
3.10 3.15	0.33						0.32					0.13				0.13		
3.20		1.00				0.14				1.00		0.15				0.12		
3.25							0.22										1.00	
3.30		0.62			1.00		0.1.						0.05					
3.40 3.45					0.62		0.14						0.20				0.62	
3.45	0.00				0.02						0.00						0.02	
3.60		0.40				0.14												
3.65												0.00						
3.70							0.00		0.00							0.11		
3.90 4.00				0.20				0.00		0.00						0.07		+
4.10				0.20				0.00		0.00						0.03		
4.25					0.10													
4.40						0.00										0.00		
4.50 5.00		0.10	0.00										0.00		0.00		0.00	0.00
6.00		0.00		0.00	0.00								0.00		0.00		0.00	0.00
8.00						0.00	0.00	0.00	0.00			0.00	0.00	0.00	0.00			
100.00								0.00		0.00						0.00		

ATTACHMENT 2

HSC Raw Data

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
6/7/2007	Reach 1A	Steelhead	1	2.5	7	1.80	2.76	MG	
6/7/2007	Reach 1A	Steelhead	1	2.5	6	1.85	2.78	LG	
6/7/2007	Reach 1A	Steelhead	1	2.6	6	1.70	2.66	MG	
6/7/2007	Reach 1A	Steelhead	1	2.4	6.5	1.45	2.46	MG	
6/7/2007	Reach 1A	Steelhead	1	2.6	6.5	1.40	3.13	MG	
6/7/2007	Reach 1A	Steelhead	1	2.5	5.5	1.75	3.41	MG	
6/13/2007	Reach 1A	Steelhead	1	5	10	1.40	2.73	LG	
6/13/2007	Reach 1A	Steelhead	1	6	8	1.50	2.77	LG	
6/13/2007	Reach 1A	Steelhead	1	10	14	1.10	2.34	LG	
6/13/2007	Reach 1A	Steelhead	1	8	12	1.10	1.95	LG	
6/13/2007	Reach 1A	Steelhead	1	6	8	1.50	3.59	LG	
6/13/2007	Reach 1A	Steelhead	1	3	6	1.60	1.54	LG	
6/13/2007	Reach 1A	Steelhead	1	3	8	2.00	1.37	LG	
6/13/2007	Reach 1A	Steelhead	1	3	8	1.50	1.61	SC	
6/13/2007	Reach 1A	Steelhead	1	4	10	1.00	1.20	LG	
6/13/2007	Reach 1A	Steelhead	1	8	12	1.70	2.40	LG	
6/13/2007	Reach 1A	Steelhead	1	6	8	1.60	2.12	LG	
6/13/2007	Reach 1A	Steelhead	1	4	7	1.50	2.14	SC	
6/7/2007	Reach 2	Steelhead	1	3.7	8.5	0.88	1.46	MG	
6/7/2007	Reach 2	Steelhead	1	3	6	1.19	1.44	MG	
6/7/2007	Reach 2	Steelhead	1	3.5	7	1.20	1.64	MG	
6/7/2007	Reach 2	Steelhead	1	2.5	5.5	0.95	0.78	MG	

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
6/7/2007	Reach 2	Steelhead	1	3	6.5	1.70	3.08	MG	
6/7/2007	Reach 2	Steelhead	1	3	7.5	1.40	2.69	MG	
6/7/2007	Reach 2	Steelhead	1	3.5	7	1.68	2.59	MG	
6/7/2007	Reach 2	Steelhead	1	3	6.5	1.32	1.90	MG	
6/7/2007	Reach 2	Steelhead	1	3	6	2.40	1.70	MG	
6/7/2007	Reach 2	Steelhead	1	3	6	1.80	2.19	MG	
6/7/2007	Reach 2	Steelhead	1	3	6.5	1.14	2.49	MG	
6/7/2007	Reach 2	Steelhead	1	2.75	5.5	2.00	1.55	MG	
6/7/2007	Reach 2	Steelhead	1	2.5	3.5	2.40	1.52	MG	
6/7/2007	Reach 2	Steelhead	1	3	3	2.21	1.54	MG	
6/7/2007	Reach 2	Steelhead	1	2.5	3	2.10	1.49	MG	
6/7/2007	Reach 2	Steelhead	1	2.75	6.5	0.95	0.79	SG	
4/23/2008	Reach 2	Steelhead	1			2.35	2.91	SC	LG
4/23/2008	Reach 2	Steelhead	1			1.9	3.34	SC	LG
4/23/2008	Reach 2	Steelhead	1			2.25	1.9	LG	SC
4/23/2008	Reach 2	Steelhead	1			1.4	3.2	LG	SC
4/23/2008	Reach 2	Steelhead	1			1.9	1.77	LG	SC
4/23/2008	Reach 2	Steelhead	1			1.75	1.94	LG	SC
4/23/2008	Reach 2	Steelhead	1			2.55	2.09	LG	SG
4/23/2008	Reach 2	Steelhead	1			1.8	1.96	LG	SG
4/23/2008	Reach 2	Steelhead	1			1.8	2.34	LG	SG
4/23/2008	Reach 2	Steelhead	1			1.3	1.59	LG	SG

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
4/23/2008	Reach 2	Steelhead	1			1.6	1.92	LG	SG
4/23/2008	Reach 2	Steelhead	1			2.3	1.9	LG	SG
4/23/2008	Reach 2	Steelhead	1			2	1.63	LG	SG
4/23/2008	Reach 2	Steelhead	1			2.55	1.255	LG	SG
4/23/2008	Reach 2	Steelhead	1			3.15	1.22	LG	SG
4/23/2008	Reach 2	Steelhead	1			1.3	1.14	SG	LG
4/23/2008	Reach 2	Steelhead	1			2.5	1.375	SG	LG
4/23/2008	Reach 2	Steelhead	1			2.15	1.62	SG	LG
5/6/2008	Reach 2	Steelhead	1			1.3	3.24	SC	LG
5/6/2008	Reach 2	Steelhead	1			1.8	2.51	SC	LG
5/6/2008	Reach 2	Steelhead	1			1.15	1.96	SC	LG
5/6/2008	Reach 2	Steelhead	1			2.65	1.89	SC	LG
5/6/2008	Reach 2	Steelhead	1			2.35	2.68	LG	SC
5/6/2008	Reach 2	Steelhead	1			3.5	2.38	LG	SC
5/6/2008	Reach 2	Steelhead	1			1.5	1.54	LG	SC
5/6/2008	Reach 2	Steelhead	1			2.65	2.47	LG	SG
5/6/2008	Reach 2	Steelhead	1			2.5	1.36	LG	SG
5/6/2008	Reach 2	Steelhead	1			2.4	2.31	LG	SG
5/6/2008	Reach 2	Steelhead	1			1.35	1.42	LG	SG
5/6/2008	Reach 2	Steelhead	1			2.15	1.33	LG	SG
5/6/2008	Reach 2	Steelhead	1			2.2	1.62	LG	SG
5/6/2008	Reach 2	Steelhead	1			1.25	2.1	LG	SG

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
5/6/2008	Reach 2	Steelhead	1			1.7	1.58	LG	SG
10/4/2006	Reach 1A	Chinook	1			1.55	2.07	RB	CB
10/4/2006	Reach 1A	Chinook	1			1.10	1.86	RB	CB
10/4/2006	Reach 1A	Chinook	1			2.10	0.87	RB	CB
10/4/2006	Reach 1A	Chinook	1			2.10	2.55	RB	CB
10/4/2006	Reach 1A	Chinook	1			2.10	1.83	RB	CB
10/4/2006	Reach 1A	Chinook	1			2.30	1.74	RB	CB
10/4/2006	Reach 1A	Chinook	1			2.20	1.73	RB	CB
10/4/2006	Reach 1A	Chinook	1			1.40	2.14	RB	CB
10/4/2006	Reach 1A	Chinook	1			2.20	2.43	RB	CB
10/4/2006	Reach 1A	Chinook	1			1.90	2.24	CB	RB
10/4/2006	Reach 1A	Chinook	1			1.85	2.34	RB	CB
10/4/2006	Reach 1A	Chinook	1			1.20	1.20	RB	BO
10/4/2006	Reach 1A	Chinook	1			1.20	1.20	RB	BO
10/4/2006	Reach 1A	Chinook	1			1.75	1.75	RB	CB
10/4/2006	Reach 1A	Chinook	1			2.20	2.20	RB	CB
10/4/2006	Reach 1A	Chinook	1			1.75	1.75	RB	CB
10/4/2006	Reach 1A	Chinook	1			1.35	1.35	RB	BO
10/4/2006	Reach 1A	Chinook	1			1.20	1.20	CG	CB
10/4/2006	Reach 1A	Chinook	1			1.10	1.10	RB	BO
10/4/2006	Reach 1A	Chinook	1			0.80	0.80	CB	RB
10/4/2006	Reach 1A	Chinook	1			1.10	1.10	CB	RB

Sultan River HSC Curve Observation Data: Spawning Observations

109/2006 Reach 1A Chinook 1 0.70 1.35 CB RB 109/2006 Reach 1A Chinook 1 1.10 1.65 RB CB 109/2006 Reach 1A Chinook 1 0.95 1.02 RB CB 109/2006 Reach 1A Chinook 1 1.35 2.10 RB BO 109/2006 Reach 1A Chinook 1 1.70 2.17 CG RB 109/2006 Reach 1A Chinook 1 1.85 2.59 CB RB 109/2006 Reach 1A Chinook 1 1.70 2.43 CB RB 109/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 109/2006 Reach 1A Chinook 1 2.43 CB RB 109/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 109/2006 Reach 1A Chi	Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
10/9/2006 Reach IA Chinook I 0.95 1.02 RB CB 10/9/2006 Reach IA Chinook I 1.35 2.10 RB BO 10/9/2006 Reach IA Chinook I 1.70 2.17 CG RB 10/9/2006 Reach IA Chinook I 2.05 0.84 CG CB 10/9/2006 Reach IA Chinook I 1.85 2.59 CB RB 10/9/2006 Reach IA Chinook I 1.70 2.43 CB RB 10/9/2006 Reach IA Chinook I 2.35 1.90 CB RB 10/9/2006 Reach IA Chinook I 2.65 1.57 CB RB 10/9/2006 Reach IA Chinook I 2.45 2.54 CB CB 10/9/2006 Reach IA Chinook I 1.20 2.97 CB RB 10/9/2006	10/9/2006	Reach 1A	Chinook	1			0.70	1.35	CB	RB
10/9/2006 Reach IA Chinook I 1.35 2.10 RB BO 10/9/2006 Reach IA Chinook I 1.70 2.17 CG RB 10/9/2006 Reach IA Chinook I 2.05 0.84 CG CB 10/9/2006 Reach IA Chinook I 1.85 2.59 CB RB 10/9/2006 Reach IA Chinook I 1.70 2.43 CB RB 10/9/2006 Reach IA Chinook I 2.35 1.90 CB RB 10/9/2006 Reach IA Chinook I 2.70 1.48 CB CG 10/9/2006 Reach IA Chinook I 2.65 1.57 CB RB 10/9/2006 Reach IA Chinook I 2.45 2.54 CB RB 10/9/2006 Reach IA Chinook I 1.35 2.43 CG CB 10/9/2006 Reach IA Chinook I 1.35 2.43 CG CB	10/9/2006	Reach 1A	Chinook	1			1.10	1.65	RB	CB
10/9/2006 Reach 1A Chinook 1 1.70 2.17 CG RB 10/9/2006 Reach 1A Chinook 1 2.05 0.84 CG CB 10/9/2006 Reach 1A Chinook 1 1.85 2.59 CB RB 10/9/2006 Reach 1A Chinook 1 1.70 2.43 CB RB 10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 10/9/2006 Reach 1A Chinook 1 2.45 2.54 CB RB 10/9/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CB	10/9/2006	Reach 1A	Chinook	1			0.95	1.02	RB	CB
10/9/2006 Reach 1A Chinook 1 2.05 0.84 CG CB 10/9/2006 Reach 1A Chinook 1 1.85 2.59 CB RB 10/9/2006 Reach 1A Chinook 1 1.70 2.43 CB RB 10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 10/9/2006 Reach 1A Chinook 1 2.45 2.54 CB RB 10/9/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CG 10/9/2006 Reach 1A Chinook 1 1.25 1.17 CB RB	10/9/2006	Reach 1A	Chinook	1			1.35	2.10	RB	BO
109/2006 Reach 1A Chinook 1 1.85 2.59 CB RB 109/2006 Reach 1A Chinook 1 1.70 2.43 CB RB 109/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 109/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 109/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 109/2006 Reach 1A Chinook 1 2.70 1.48 CB CG 109/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 109/2006 Reach 1A Chinook 1 2.45 2.54 CB CB 109/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 109/2006 Reach 1A Chinook 1 1.35 2.43 CG CG 109/2006 Reach 1A Chinook 1 2.15 2.84 CB CB 10	10/9/2006	Reach 1A	Chinook	1			1.70	2.17	CG	RB
10/9/2006 Reach 1A Chinook 1 1.70 2.43 CB RB 10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.70 1.48 CB CG 10/9/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 10/9/2006 Reach 1A Chinook 1 2.45 2.54 CB RB 10/9/2006 Reach 1A Chinook 1 0.75 1.31 CG CB 10/9/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CG 10/9/2006 Reach 1A Chinook 1 2.15 2.84 CB CG 10/9/2006 Reach 1A Chinook 1 2.15 1.17 CB RB 10/9/2006 Reach 1A Chinook 1 2.15 2.21 CG CB	10/9/2006	Reach 1A	Chinook	1			2.05	0.84	CG	CB
10/9/2006 Reach 1A Chinook 1 2.35 1.90 CB RB 10/9/2006 Reach 1A Chinook 1 2.70 1.48 CB CG 10/9/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 10/9/2006 Reach 1A Chinook 1 2.45 2.54 CB RB 10/9/2006 Reach 1A Chinook 1 0.75 1.31 CG CB 10/9/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CG 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CG 10/9/2006 Reach 1A Chinook 1 1.25 1.17 CB RB 10/9/2006 Reach 1A Chinook 1 2.15 2.21 CG CB 10/9/2006 Reach 1A Chinook 1 2.15 1.86 CG CB	10/9/2006	Reach 1A	Chinook	1			1.85	2.59	CB	RB
10/9/2006 Reach 1A Chinook 1 2.70 1.48 CB CG 10/9/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 10/9/2006 Reach 1A Chinook 1 2.45 2.54 CB RB 10/9/2006 Reach 1A Chinook 1 0.75 1.31 CG CB 10/9/2006 Reach 1A Chinook 1 0.75 1.31 CG CB 10/9/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CB 10/9/2006 Reach 1A Chinook 1 1.35 2.84 CB CG 10/9/2006 Reach 1A Chinook 1 1.25 1.17 CB RB 10/9/2006 Reach 1A Chinook 1 2.15 2.84 CG CB 10/9/2006 Reach 1A Chinook 1 2.15 1.86 CG CB	10/9/2006	Reach 1A	Chinook	1			1.70	2.43	CB	RB
10/9/2006 Reach 1A Chinook 1 2.65 1.57 CB RB 10/9/2006 Reach 1A Chinook 1 2.45 2.54 CB RB 10/9/2006 Reach 1A Chinook 1 0.75 1.31 CG CB 10/9/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CB 10/9/2006 Reach 1A Chinook 1 1.25 1.17 CB RB 10/9/2006 Reach 1A Chinook 1 2.15 2.21 CG CB 10/9/2006 Reach 1A Chinook 1 2.15 1.86 CG CB 10/9/2006 Reach 1A Chinook 1 0.70 1.71 CB CG 10/9/2006 Reach 1A Chinook 1 0.70 1.71 CB CG	10/9/2006	Reach 1A	Chinook	1			2.35	1.90	CB	RB
10/9/2006 Reach 1A Chinook 1 2.45 2.54 CB RB 10/9/2006 Reach 1A Chinook 1 0.75 1.31 CG CB 10/9/2006 Reach 1A Chinook 1 1.20 2.97 CB RB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CG CB 10/9/2006 Reach 1A Chinook 1 1.35 2.43 CB CG 10/9/2006 Reach 1A Chinook 1 2.15 2.84 CB CG 10/9/2006 Reach 1A Chinook 1 2.15 1.17 CB RB 10/9/2006 Reach 1A Chinook 1 2.15 1.86 CG CB 10/9/2006 Reach 1A Chinook 1 0.70 1.71 CB CG 10/9/2006 Reach 1A Chinook 1 1.35 1.39 CB CG	10/9/2006	Reach 1A	Chinook	1			2.70	1.48	CB	CG
10/9/2006Reach 1AChinook10.751.31CGCB10/9/2006Reach 1AChinook11.202.97CBRB10/9/2006Reach 1AChinook11.352.43CGCB10/9/2006Reach 1AChinook12.152.84CBCG10/9/2006Reach 1AChinook11.251.17CBRB10/9/2006Reach 1AChinook12.152.21CGCB10/9/2006Reach 1AChinook12.151.86CGCB10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			2.65	1.57	CB	RB
10/9/2006Reach 1AChinook11.202.97CBRB10/9/2006Reach 1AChinook11.352.43CGCB10/9/2006Reach 1AChinook12.152.84CBCG10/9/2006Reach 1AChinook11.251.17CBRB10/9/2006Reach 1AChinook12.152.21CGCB10/9/2006Reach 1AChinook12.151.86CGCB10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			2.45	2.54	CB	RB
10/9/2006Reach 1AChinook11.352.43CGCB10/9/2006Reach 1AChinook12.152.84CBCG10/9/2006Reach 1AChinook11.251.17CBRB10/9/2006Reach 1AChinook12.152.21CGCB10/9/2006Reach 1AChinook12.151.86CGCB10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			0.75	1.31	CG	CB
10/9/2006Reach 1AChinook12.152.84CBCG10/9/2006Reach 1AChinook11.251.17CBRB10/9/2006Reach 1AChinook12.152.21CGCB10/9/2006Reach 1AChinook12.151.86CGCB10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			1.20	2.97	CB	RB
10/9/2006Reach 1AChinook11.251.17CBRB10/9/2006Reach 1AChinook12.152.21CGCB10/9/2006Reach 1AChinook12.151.86CGCB10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			1.35	2.43	CG	CB
10/9/2006Reach 1AChinook12.152.21CGCB10/9/2006Reach 1AChinook12.151.86CGCB10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			2.15	2.84	CB	CG
10/9/2006Reach 1AChinook12.151.86CGCB10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			1.25	1.17	CB	RB
10/9/2006Reach 1AChinook10.701.71CBCG10/9/2006Reach 1AChinook11.351.39CBCG	10/9/2006	Reach 1A	Chinook	1			2.15	2.21	CG	CB
10/9/2006 Reach 1A Chinook 1 1.35 1.39 CB CG	10/9/2006	Reach 1A	Chinook	1			2.15	1.86	CG	CB
	10/9/2006	Reach 1A	Chinook	1			0.70	1.71	CB	CG
10/9/2006 Reach 1A Chinook 1 1.40 3.16 CG CB	10/9/2006	Reach 1A	Chinook	1			1.35	1.39	CB	CG
	10/9/2006	Reach 1A	Chinook	1			1.40	3.16	CG	CB

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
10/9/2006	Reach 1A	Chinook	1			1.20	2.84	CB	CG
10/9/2006	Reach 1A	Chinook	1			1.30	1.65	FG	CG
10/15/2007	Reach 1A	Chinook	1			1.10	1.50	RB	CB
10/15/2007	Reach 1A	Chinook	1			1.80	1.67	CB	CG
10/15/2007	Reach 1A	Chinook	1			0.70	1.99	RB	CB
10/15/2007	Reach 1A	Chinook	1			1.10	1.03	CB	CG
10/15/2007	Reach 1A	Chinook	1			0.90	1.26	RB	CB
10/15/2007	Reach 1A	Chinook	1			1.40	1.43	RB	CB
10/15/2007	Reach 1A	Chinook	1			2.15	3.16	CB	CG
10/2/2006	Reach 2	Chinook	1			0.95	0.58	RB	CB
10/2/2006	Reach 2	Chinook	1			2.20	1.26	CB	CG
10/2/2006	Reach 2	Chinook	1			1.60	1.67	CG	CB
10/2/2006	Reach 2	Chinook	1			1.45	1.97	FG	RB
10/2/2006	Reach 2	Chinook	1			1.65	1.46	CG	CB
10/2/2006	Reach 2	Chinook	1			1.85	1.97	RB	CB
10/2/2006	Reach 2	Chinook	1			0.90	1.52	CB	CG
10/2/2006	Reach 2	Chinook	1			2.10	1.54	RB	CB
10/2/2006	Reach 2	Chinook	1			2.45	1.80	RB	CB
10/2/2006	Reach 2	Chinook	1			2.45	1.39	CG	CB
10/2/2006	Reach 2	Chinook	1			1.50	2.52	CG	CB
10/2/2006	Reach 2	Chinook	1			1.70	1.93	CB	CG
10/2/2006	Reach 2	Chinook	1			2.50	0.61	RB	CB

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
10/2/2006	Reach 2	Chinook	1			1.90	1.40	СВ	RB
10/2/2006	Reach 2	Chinook	1			2.00	0.98	RB	CB
10/10/2006	Reach 2	Chinook	1			3.60	0.76	CB	CG
10/10/2006	Reach 2	Chinook	1			3.40	0.86	CG	FG
10/10/2006	Reach 2	Chinook	1			1.90	1.30	FG	CG
10/10/2006	Reach 2	Chinook	1			1.25	1.73	RB	CB
10/10/2006	Reach 2	Chinook	1			1.80	2.15	CB	RB
10/10/2006	Reach 2	Chinook	1			3.40	1.36	CG	RB
10/10/2006	Reach 2	Chinook	1			1.70	3.19	RB	CB
10/10/2006	Reach 2	Chinook	1			1.70	3.19	RB	CB
10/10/2006	Reach 2	Chinook	1			1.70	3.19	RB	CB
10/10/2006	Reach 2	Chinook	1			1.90	1.95	CB	CG
10/10/2006	Reach 2	Chinook	1			2.10	1.95	CG	CB
10/10/2006	Reach 2	Chinook	1			2.00	2.64	CG	CB
10/10/2006	Reach 2	Chinook	1			2.45	1.78	CB	CG
10/10/2006	Reach 2	Chinook	1			3.50	1.52	CG	CB
10/10/2006	Reach 2	Chinook	1			2.30	2.28	CB	RB
9/24/2007	Reach 2	Chinook	1			1.95	5.09	CG	RB
9/24/2007	Reach 2	Chinook	1			2.80	2.52	FG	CG
9/24/2007	Reach 2	Chinook	1			1.90	1.90	RB	FG
9/24/2007	Reach 2	Chinook	1			1.90	1.90	RB	FG
9/24/2007	Reach 2	Chinook	1			1.45	1.45	RB	FG

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
9/24/2007	Reach 2	Chinook	1			1.75	1.75	CG	RB
9/24/2007	Reach 2	Chinook	1			0.95	0.95	FG	CG
9/24/2007	Reach 2	Chinook	1			0.70	0.70	FG	CG
9/24/2007	Reach 2	Chinook	1			2.10	2.30	CG	FG
9/24/2007	Reach 2	Chinook	1			2.10	1.36	CG	FG
9/24/2007	Reach 2	Chinook	1			2.10	1.71	CG	CB
9/24/2007	Reach 2	Chinook	1			2.30	0.96	CB	CG
9/24/2007	Reach 2	Chinook	1			1.20	1.15	CG	CB
9/24/2007	Reach 2	Chinook	1			2.10	1.72	RB	CB
9/24/2007	Reach 2	Chinook	1			1.45	2.93	RB	CB
9/24/2007	Reach 2	Chinook	1			1.75	2.61	RB	CB
9/24/2007	Reach 2	Chinook	1			2.30	1.40	RB	CB
9/24/2007	Reach 2	Chinook	1			2.90	1.58	RB	CB
9/24/2007	Reach 2	Chinook	1			1.90	1.32	RB	CB
9/24/2007	Reach 2	Chinook	1			2.10	0.96	CB	CG
9/24/2007	Reach 2	Chinook	1			1.35	1.37	CG	CB
10/12/2007	Reach 2	Chinook	1			1.15	1.27	CG	FG
10/12/2007	Reach 2	Chinook	1			2.00	2.27	CB	CG
10/12/2007	Reach 2	Chinook	1			2.05	2.79	CB	RB
10/12/2007	Reach 2	Chinook	1			0.95	3.32	CB	CG
10/12/2007	Reach 2	Chinook	1			1.00	0.67	RB	FG
10/12/2007	Reach 2	Chinook	1			0.70	0.91	CG	СВ

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
10/12/2007	Reach 2	Chinook	1			1.00	1.55	CG	СВ
10/12/2007	Reach 2	Chinook	1			2.00	1.93	CG	СВ
10/12/2007	Reach 2	Chinook	1			2.40	1.73	CG	СВ
10/12/2007	Reach 2	Chinook	1			1.95	2.31	CG	CB
10/12/2007	Reach 2	Chinook	1			1.25	2.36	CB	CG
10/12/2007	Reach 2	Chinook	1			2.00	2.38	CB	CG
10/12/2007	Reach 2	Chinook	1			0.90	2.21	CG	FG
10/12/2007	Reach 2	Chinook	1			2.45	1.80	CB	CG
10/12/2007	Reach 2	Chinook	1			1.75	1.62	CB	CG
10/12/2007	Reach 2	Chinook	1			1.35	2.40	RB	CB
10/12/2007	Reach 2	Chinook	1			1.65	2.25	RB	CB
10/12/2007	Reach 2	Chinook	1			1.70	2.54	RB	CB
10/12/2007	Reach 2	Chinook	1			1.45	2.50	RB	CB
10/12/2007	Reach 2	Chinook	1			2.10	2.03	RB	CB
10/12/2007	Reach 2	Chinook	1			1.10	1.09	RB	CB
10/12/2007	Reach 2	Chinook	1			1.40	1.12	CB	FG
10/12/2007	Reach 2	Chinook	1			1.75	2.77	RB	CB
10/12/2007	Reach 2	Chinook	1			1.60	1.80	RB	CB
10/12/2007	Reach 2	Chinook	1			1.40	3.35	RB	CB
10/12/2007	Reach 2	Chinook	1			1.75	2.31	RB	CB
10/12/2007	Reach 2	Chinook	1			1.30	1.52	RB	CB
10/12/2007	Reach 2	Chinook	1			0.70	3.27	RB	CB

Sultan River HSC Curve Observation Data: Spawning Observations

Date	Reach	Species	# of Obs.	Redd Width (ft)	Redd Length (ft)	Water Depth (ft)	Mean Column Velocity (ft/s)	Dom Sub.	Subdom. Sub.
10/12/2007	Reach 2	Chinook	1			0.85	2.63	RB	CB
10/12/2007	Reach 2	Chinook	1			2.60	1.13	CG	CB
10/12/2007	Reach 2	Chinook	1			2.60	1.33	CG	CB

Sultan River HSC Curve Observation	Data: Spawning Observations
------------------------------------	------------------------------------

						Mean						
Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
7/27/2007	Reach 1A	1	Chinook	70	1.9	0.06	0.6-1.1	same	SC	LG	80	veg/undercut bank/ roots
8/8/2007	Reach 1A	1	Chinook	70	1.4	0.12	0.4	same	LC	SC	60	overhanging veg/swd
7/27/2007	Reach 1A	1	Coho	70	1.70	0.02	0.1	0.02	В	LC	60	wood
7/27/2007	Reach 1A	1	Coho	70	0.75	0.24	0.3	same	SC	LG	60	veg
7/27/2007	Reach 1A	1	Coho	70	0.90	0.30	0.2	0.26	SC	LG	60	veg
7/27/2007	Reach 1A	1	Coho	70	1.25	0.02	0.6	same	LG	LC	60	veg
7/27/2007	Reach 1A	1	Coho	75	0.80	0.02	0.2	0.02	LG	SLT	80	undercut bank
7/27/2007	Reach 1A	1	Coho	70	1.45	0.08	0.3	0.02	LC	SND	60	veg/wood
7/27/2007	Reach 1A	4	Coho	65-85	1.3	0.63	0.3-0.4	same	LC	LG	60	roots/undercut bank
7/27/2007	Reach 1A	6	Coho	70-90	1.25	0.19	0.25	0.18	LG	LC	60	wood
7/27/2007	Reach 1A	10	Coho	60-80	0.60	0.83	0.1-0.15	0.36	SC	LC	70	
7/27/2007	Reach 1A	10	Coho	60-80	0.60	0.12	0.1-0.15	0.06	SC	LC	70	
7/27/2007	Reach 1A	10	Coho	65-85	1.7	0.02	0.6-0.8	0.02	SC	LG	60	roots/undercut bank
7/27/2007	Reach 1A	10	Coho	65-85	1.9	0.02	0.6-1.0	0.02	SC	LG	60	
7/27/2007	Reach 1A	12	Coho	65-80	1.55	0.07	0.6-1.1	0.02	SC	LG	80	veg/undercut bank/ roots
7/27/2007	Reach 1A	12	Coho	65-80	1.1	0.09	0.3	same	SC	LG	80	veg/undercut bank/ roots
7/27/2007	Reach 1A	20	Coho	65-100	1.8	0.10	0.8	same	SC	LG	80	veg/undercut bank/ roots
7/27/2007	Reach 1A	20	Coho	65-100	2.2	0.02	0.6-1.1	0.02	SC	LG	80	veg/undercut bank/ roots
7/27/2007	Reach 1A	20	Coho	65-100	1.9	0.06	0.6-1.1	same	SC	LG	80	veg/undercut bank/ roots
7/27/2007	Reach 1A	20	Coho	65-85	1.95	0.20	0.5-1.0	same	LC	LG	60	veg/wood/roots
7/27/2007	Reach 1A	20	Coho	65-85	1.5	0.06	0.4-0.8	same	LC	LG	60	veg
8/8/2007	Reach 1A	1	Coho	70	0.55	0.26	0.15	same	SC	SG	60	bank

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
8/8/2007	Reach 1A	1	Coho	70	0.55	0.38	0.2	same	LG	MG	60	bank
8/8/2007	Reach 1A	1	Coho	100	1.35	0.40	0.3	0.64	LG	SC	60	roots
8/8/2007	Reach 1A	1	Coho	65	2.1	0.25	0.5	same	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	65	2.8	0.48	1.9	same	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	65	2.6	0.51	0.4	same	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	70	2.6	0.83	1.8	same	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	65	0.35	0.23	0.2	same	LG	MG	60	overhanging veg/swd
8/8/2007	Reach 1A	1	Coho	70	3	0.47	0.6	0.39	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	70	3	0.43	1.2	0.39	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	75	2.9	0.42	1.3	0.24	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	75	3.3	0.32	2	0.14	В	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	85	2.8	0.84	1.8	0.26	В	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	85	2.8	0.28	1.6	0.03	В	SC	60	lwd
8/8/2007	Reach 1A	1	Coho	80	2.5	1.71	0.5	0.85	SC	LC	60	overhanging veg
8/8/2007	Reach 1A	1	Coho	100	2.4	1.52	0.4	0.46	SC	LC	60	overhanging veg
8/8/2007	Reach 1A	1	Coho	70	1.4	0.58	0.2	0.27	SC	LG	80	lwd
8/8/2007	Reach 1A	1	Coho	75	1.45	0.60	0.2	0.26	SC	LG	80	lwd
8/8/2007	Reach 1A	1	Coho	75	1.1	0.75	0.3	0.72	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Coho	75	1.4	0.08	0.5	same	LC	SC	60	overhanging veg/swd
8/8/2007	Reach 1A	1	Coho	70	1.1	0.39	0.3	same	LC	SC	60	overhanging veg/swd
8/8/2007	Reach 1A	1	Coho	70	1.6	0.30	0.4	same	LC	SC	60	overhanging veg/swd
8/8/2007	Reach 1A	1	Coho	70	0.6	0.05	0.1	same	LC	SC	60	overhanging lwd

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
8/8/2007	Reach 1A	1	Coho	70	2	0.05	1.5	same	BR	SC	60	overhanging veg/bank
8/8/2007	Reach 1A	2	Coho	65-80	0.65	0.32	0.2	same	LG	MG	60	swd
8/8/2007	Reach 1A	2	Coho	65-80	1.3	0.66	0.3	0.57	LG	SC	60	roots
8/8/2007	Reach 1A	2	Coho	80	0.8	0.06	0.3	same	LC	SC	70	bank
8/8/2007	Reach 1A	2	Coho	75-85	0.6	0.04	0.1	same	LC	SC	60	overhanging lwd
8/8/2007	Reach 1A	2	Coho	65-85	2.4	0.94	0.8	same	BR	SC	60	overhanging veg
8/8/2007	Reach 1A	3	Coho	65-80	0.7	0.34	0.1	same	LG	MG	60	swd
8/8/2007	Reach 1A	3	Coho	65-80	0.65	0.40	0.2	same	LG	MG	60	swd
8/8/2007	Reach 1A	3	Coho	65-80	0.75	0.23	0.25	same	LG	LC	60	bank
8/8/2007	Reach 1A	3	Coho	65-80	0.45	0.15	0.25	same	LG	SC	60	bank
8/8/2007	Reach 1A	3	Coho	65-80	1.5	0.69	0.2	0.24	SC	LG	80	
8/8/2007	Reach 1A	3	Coho	65-85	2.4	0.82	0.6	0.76	BR	SC	60	
8/8/2007	Reach 1A	3	Coho	65-85	2.1	0.78	0.6	same	BR	SC	60	
8/8/2007	Reach 1A	4	Coho	80-85	3.95	0.28	1.4	same	LC	SC	70	overhanging veg
8/8/2007	Reach 1A	4	Coho	70-80	1	0.17	0.3	same	SC	LC	80	lwd
8/8/2007	Reach 1A	4	Coho	65-85	2.8	0.91	0.8	same	BR	SC	60	overhanging veg
8/8/2007	Reach 1A	4	Coho	65-85	2.9	1.14	1	same	BR	SC	60	overhanging veg
8/8/2007	Reach 1A	5	Coho	65-85	1.7	0.23	0.4	same	SC	LC	60	bank
8/8/2007	Reach 1A	6	Coho	80-85	3.4	0.19	0.8	same	LC	SC	70	overhanging veg
8/8/2007	Reach 1A	6	Coho	65-85	3.2	0.86	1.2	same	BR	SC	60	overhanging veg
8/8/2007	Reach 1A	8	Coho	65-85	1.9	0.14	0.4	same	SC	LC	60	bank
8/8/2007	Reach 1A	8	Coho	65-85	3.1	0.26	1.2	0.15	LC	SC	70	overhanging veg

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
8/8/2007	Reach 1A	8	Coho	65-85	3.6	0.38	1	0.27	LC	SC	70	overhanging veg
8/8/2007	Reach 1A	8	Coho	65-85	3	0.20	0.8	same	LC	SC	70	overhanging veg
8/8/2007	Reach 1A	8	Coho	70-85	3.6	0.32	1.2	same	LC	SC	70	overhanging veg
8/8/2007	Reach 1A	10	Coho	65-85	1.5	0.02	0.2	same	В	LC	60	lwd
8/8/2007	Reach 1A	10	Coho	65-85	1.7	0.09	0.4	same	В	LC	60	lwd
8/8/2007	Reach 1A	10	Coho	65-100	2.7	0.05	0.6	same	BR	SC	60	undercut bank
8/8/2007	Reach 1A	10	Coho	65-100	3.6	0.40	0.8	0.5	BR	SC	60	undercut bank
8/8/2007	Reach 1A	10	Coho	65-100	3.25	0.21	0.8	0.28	BR	SC	60	undercut bank and lwo
8/8/2007	Reach 1A	10	Coho	65-100	3.6	0.36	1.4	0.52	BR	SC	60	lwd
8/8/2007	Reach 1A	10	Coho	65-100	3.8	0.44	1.8	0.59	BR	SC	60	lwd
8/8/2007	Reach 1A	13	Coho	65-100	0.95	0.02	0.2	same	LC	В	60	overhanging veg
8/8/2007	Reach 1A	13	Coho	65-100	1.15	0.02	0.3	same	LC	В	60	overhanging veg
8/8/2007	Reach 1A	13	Coho	65-100	1.35	0.02	0.4	same	LC	В	60	overhanging veg
7/27/2007	Reach 2	1	Coho	70	1.40	0.22	0.15	0.09	SC	LG	60	
7/27/2007	Reach 2	1	Coho	65	0.65	0.15	0.2	0.11	В	LG	60	
7/27/2007	Reach 2	1	Coho	60	0.60	0.50	0.1	0.39	LG	SC	60	
7/27/2007	Reach 2	1	Coho	65	1.25	0.02	0.2	0.02	В	MG	80	
7/27/2007	Reach 2	2	Coho	60-70	1.95	0.04	0.3	0.03	В	LC	80	boulder
7/27/2007	Reach 2	3	Coho	60-65	0.40	0.49	0.1	same	LC	MG	60	
7/27/2007	Reach 2	3	Coho	60-80	1.05	0.05	0.15	0.14	LC	LG	60	
7/27/2007	Reach 2	3	Coho	60-80	1.10	0.60	0.15	0.43	LG	В	70	
7/27/2007	Reach 2	3	Coho	70	0.80	0.02	0.1	0.02	В	MG	80	

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
7/27/2007	Reach 2	8	Coho	60-70	1.35	0.40	0.2	0.3	В	SG	60	
7/27/2007	Reach 2	8	Coho	60-70	1.55	0.41	0.3	0.14	В	SG	60	
7/27/2007	Reach 2	8	Coho	60-70	1.35	0.76	0.4	0.4	В	SG	60	
7/27/2007	Reach 1A	1	Trout	40	1.40	0.10	0.3	0.12	В	LC	60	undercut bank
7/27/2007	Reach 1A	1	Trout	40	0.70	0.83	0.2	same	SC	LC	70	
7/27/2007	Reach 1A	1	Trout	40	0.50	0.10	0.25	same	SC	LC	70	
7/27/2007	Reach 1A	1	Trout	40	0.60	0.50	0.3	same	SC	LC	70	
7/27/2007	Reach 1A	1	Trout	35	0.50	0.35	0.2	same	SC	LG	60	
7/27/2007	Reach 1A	1	Trout	40	1.25	0.02	0.9	0.13	LG	LC	60	veg
7/27/2007	Reach 1A	1	Trout	35	0.95	0.51	0.4	same	SC	LG	70	
7/27/2007	Reach 1A	1	Trout	45	0.55	0.06	0.2	same	SC	LG	70	
7/27/2007	Reach 1A	1	Trout	40	1.8	0.81	0.8	same	SC	LG	70	veg
7/27/2007	Reach 1A	1	Trout	40	1.95	0.02	1.7	0.02	SC	LG	70	veg/wood/roots
7/27/2007	Reach 1A	1	Trout	40	0.8	0.02	0.3	0.02	SC	LG	60	
7/27/2007	Reach 1A	1	Trout	40	1	0.05	0.05	0.02	LC	SC	70	
7/27/2007	Reach 1A	1	Trout	35-40	0.9	0.43	0.4	same	SC	LC	60	veg
7/27/2007	Reach 1A	1	Trout	35-40	0.7	0.21	0.3	same	SC	LC	60	veg
7/27/2007	Reach 1A	2	Trout	35-40	0.45	0.20	0.3	same	SC	LC	70	
7/27/2007	Reach 1A	2	Trout	40	0.55	0.02	0.45	same	SC	SG	60	veg/wood
7/27/2007	Reach 1A	2	Trout	40	1.2	0.02	1	0.02	LC	SC	60	wood
7/27/2007	Reach 1A	2	Trout	40	0.6	0.13	0.3	same	SC	LG	60	
7/27/2007	Reach 1A	2	Trout	35-40	0.25	0.02	0.05	0.02	LC	SC	70	

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
7/27/2007	Reach 1A	2	Trout	35-40	0.3	0.02	0.05	0.02	LC	SC	70	
7/27/2007	Reach 1A	2	Trout	35-40	0.55	0.13	0.2	same	SC	LC	60	veg
7/27/2007	Reach 1A	2	Trout	35-40	0.5	0.23	0.25	same	SC	LC	60	veg
7/27/2007	Reach 1A	3	Trout	35-45	0.95	0.58	0.5	same	SC	LG	60	veg
7/27/2007	Reach 1A	3	Trout	35-45	0.85	0.42	0.5	same	SC	LG	60	veg
7/27/2007	Reach 1A	3	Trout	35-45	0.7	0.47	0.3	same	SC	LG	70	
7/27/2007	Reach 1A	3	Trout	35-40	0.2	0.02	0.05	0.02	LC	SC	70	
7/27/2007	Reach 1A	3	Trout	35-40	0.3	0.03	0.15	same	SC	LC	60	veg
7/27/2007	Reach 1A	4	Trout	40	0.4	0.24	0.2	same	LG	LC	60	
7/27/2007	Reach 1A	4	Trout	40	0.7	0.02	0.3	0.02	LC	SC	70	
7/27/2007	Reach 1A	5	Trout	35-45	0.80	0.34	0.2	same	SC	LC	70	
7/27/2007	Reach 1A	5	Trout	40	0.6	0.10	0.3	same	SC	LG	60	veg
7/27/2007	Reach 1A	5	Trout	40	0.5	0.27	0.3	same	SC	LG	60	veg
7/27/2007	Reach 1A	6	Trout	35-45	0.65	0.28	0.2	same	SC	LC	60	
7/27/2007	Reach 1A	20	Trout	35-50	0.60	0.83	0.1-0.15	0.36	SC	LC	70	
7/27/2007	Reach 1A	20	Trout	35-50	0.60	0.12	0.1-0.15	0.06	SC	LC	70	
8/8/2007	Reach 1A	1	Trout	45	0.5	0.30	0.4	same	SC	LC	60	grass
8/8/2007	Reach 1A	1	Trout	40	1	0.25	0.3	same	SC	LC	60	
8/8/2007	Reach 1A	1	Trout	45	0.95	0.33	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	45	0.5	0.06	0.4	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	50	0.4	0.02	0.2	same	LG	SC	60	swd
8/8/2007	Reach 1A	1	Trout	45	0.55	0.22	0.2	same	LG	SC	60	swd

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
8/8/2007	Reach 1A	1	Trout	55	0.4	0.08	0.2	same	LG	SC SC	60	cover
8/8/2007	Reach 1A	1	Trout	45	0.75	0.72	0.5	0.82	LG	SND	60	bank
8/8/2007	Reach 1A	1	Trout	55	0.6	0.30	0.2	same	LG	SC	60	
8/8/2007	Reach 1A	1	Trout	45	0.5	0.35	0.2	same	LG	SC	60	
8/8/2007	Reach 1A	1	Trout	50	0.45	0.20	0.2	same	LG	SC	60	
8/8/2007	Reach 1A	1	Trout	40	0.5	0.02	0.2	same	LG	MG	60	
8/8/2007	Reach 1A	1	Trout	45	0.5	0.15	0.2	same	SC	LC	60	
8/8/2007	Reach 1A	1	Trout	50	0.75	0.22	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	45	0.5	0.85	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	45	0.6	0.32	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	45	0.9	0.74	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	45	0.75	0.11	0.3	same	SC	LG	60	overhanging veg
8/8/2007	Reach 1A	1	Trout	50	1.2	0.03	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	45	0.3	0.15	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	1	Trout	50	0.45	0.26	0.25	same	LG	SC	60	overhanging veg
8/8/2007	Reach 1A	1	Trout	45	0.3	0.13	0.15	same	LG	SC	60	overhanging veg
8/8/2007	Reach 1A	1	Trout	50	0.4	0.19	0.15	same	LG	SC	60	bank
8/8/2007	Reach 1A	1	Trout	50	0.5	0.89	0.15	same	LG	LC	60	
8/8/2007	Reach 1A	1	Trout	40	0.35	0.23	0.2	same	LG	MG	60	overhanging veg/swd
8/8/2007	Reach 1A	1	Trout	45	0.5	0.54	0.2	same	LG	MG	60	overhanging veg/swd
8/8/2007	Reach 1A	1	Trout	250	2.5	0.66	0.3	0.08	В	SC	60	lwd
8/8/2007	Reach 1A	1	Trout	50	0.45	0.86	0.2	same	LG	SC	60	

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
8/8/2007	Reach 1A	1	Trout	35	0.45	0.17	0.3	same	SC	LG	60	swd
8/8/2007	Reach 1A	1	Trout	120	2.5	0.59	0.3	0.67	SC	LC	60	overhanging veg
8/8/2007	Reach 1A	1	Trout	150	1.5	1.24	0.2	0.82	SC	LG	80	lwd
8/8/2007	Reach 1A	1	Trout	150	1.45	1.49	0.2	0.73	SC	LG	80	lwd
8/8/2007	Reach 1A	1	Trout	135	1.4	1.18	0.3	0.26	SC	LG	80	lwd
8/8/2007	Reach 1A	1	Trout	130	1.1	1.10	0.3	0.6	SC	LC	60	lwd
8/8/2007	Reach 1A	1	Trout	55	1.25	0.08	0.4	same	В	SC	60	
8/8/2007	Reach 1A	1	Trout	55	0.7	0.15	0.3	same	В	SC	60	bank
8/8/2007	Reach 1A	1	Trout	150	1.5	1.96	0.2	0.71	В	LC	60	
8/8/2007	Reach 1A	1	Trout	60	1.75	0.18	0.2	0.02	В	LC	90	bank
8/8/2007	Reach 1A	1	Trout	50	1.4	0.08	0.3	same	LC	SC	60	overhanging veg/sw
8/8/2007	Reach 1A	1	Trout	150	0.8	0.05	0.4	same	LC	SC	60	overhanging veg/swo
8/8/2007	Reach 1A	1	Trout	50	0.5	0.24	0.1	same	LC	SC	60	overhanging lwd
8/8/2007	Reach 1A	1	Trout	55	0.6	0.05	0.1	same	LC	SC	60	overhanging lwd
8/8/2007	Reach 1A	1	Trout	45	0.6	0.06	0.2	same	LC	SC	60	overhanging lwd
8/8/2007	Reach 1A	1	Trout	40	0.6	0.33	0.2	same	LC	SC	60	
8/8/2007	Reach 1A	1	Trout	45	0.5	0.70	0.1	same	LC	SC	60	
8/8/2007	Reach 1A	1	Trout	45	1	0.23	0.4	same	SC	LC	80	
8/8/2007	Reach 1A	1	Trout	50	1.2	0.20	0.5	same	SC	LC	80	
8/8/2007	Reach 1A	1	Trout	45	1	0.27	0.5	same	SC	LC	80	
8/8/2007	Reach 1A	1	Trout	50	1.1	0.48	0.3	same	SC	LC	80	lwd
8/8/2007	Reach 1A	1	Trout	50	1.2	0.59	0.1	0.35	BR	SC	60	

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
8/8/2007	Reach 1A	1	Trout	45-50	1.3	0.12	0.4	same	LC	SC	60	
8/8/2007	Reach 1A	1	Trout	45	1	0.14	0.6	same	SC	LG	70	
8/8/2007	Reach 1A	2	Trout	45-50	0.3	0.27	0.2	same	LG	SND	60	bank
8/8/2007	Reach 1A	2	Trout	45	0.45	0.27	0.2	same	LG	SC	60	overhanging branch
8/8/2007	Reach 1A	2	Trout	45	1.3	0.36	0.15	same	SC	MG	60	
8/8/2007	Reach 1A	2	Trout	40	0.5	0.29	0.1	same	LC	SC	60	
8/8/2007	Reach 1A	2	Trout	40-50	0.6	0.40	0.1	same	SC	LG	60	bank
8/8/2007	Reach 1A	2	Trout	35-40	1.2	0.42	0.3	same	LC	LG	70	
8/8/2007	Reach 1A	2	Trout	45-50	1.2	0.02	0.4	same	LC	SC	60	
8/8/2007	Reach 1A	2	Trout	40-45	0.8	0.38	0.2	same	LC	SC	80	
8/8/2007	Reach 1A	2	Trout	40-45	0.6	0.14	0.3	same	LC	SC	60	
8/8/2007	Reach 1A	3	Trout	40-55	0.7	0.19	0.3	same	SC	LC	60	
8/8/2007	Reach 1A	3	Trout	45-50	0.3	0.08	0.2	same	SC	LG	60	swd
8/8/2007	Reach 1A	3	Trout	40-50	0.5	0.03	0.2	same	SC	LG	60	swd
8/8/2007	Reach 1A	3	Trout	45-55	0.5	0.25	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	3	Trout	45-55	0.5	0.30	0.2	same	SC	LG	60	
8/8/2007	Reach 1A	3	Trout	40-45	0.5	0.07	0.2	same	LG	SC	60	overhanging branch
8/8/2007	Reach 1A	3	Trout	40-50	0.85	0.28	0.3	same	LC	SC	60	
8/8/2007	Reach 1A	3	Trout	40-45	0.5	0.13	0.2	same	LC	SC	80	
8/8/2007	Reach 1A	4	Trout	40	0.5	0.40	0.2	same	LG	MG	60	bank
8/8/2007	Reach 1A	4	Trout	40-45	0.7	0.04	0.4	same	SC	LG	70	
8/8/2007	Reach 1A	5	Trout	35-45	0.7	0.02	0.2	same	SC	LC	60	

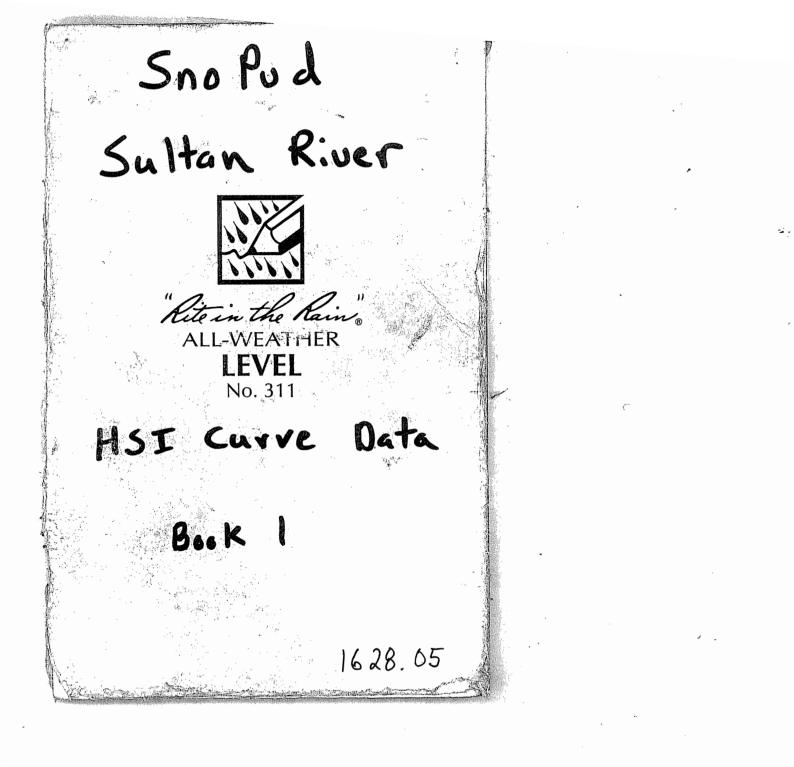
Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
8/8/2007	Reach 1A	5	Trout	40-45	0.4	0.11	0.2	same	SC	В	60	
8/8/2007	Reach 1A	6	Trout	35-45	0.4	0.02	0.2	same	SC	LG	60	overhanging veg
8/8/2007	Reach 1A	12	Trout	40-45	0.6	0.50	0.2	same	SC	В	60	
7/27/2007	Reach 2	1	Trout	50	2.15	0.00	0.05	0	В	LC	80	boulder
7/27/2007	Reach 2	1	Trout	40	0.40	0.52	0.1	same	LG	В	90	
7/27/2007	Reach 2	1	Trout	40	0.55	0.23	0.2	0.21	LG	LC	70	
7/27/2007	Reach 2	1	Trout	50	1.60	0.27	0.2	0.49	В	SG	70	
7/27/2007	Reach 2	1	Trout	45	0.70	0.45	0.2	0.17	В	MG	80	boulder
7/27/2007	Reach 2	1	Trout	45	1.25	0.12	0.1	0.01	В	MG	80	
7/27/2007	Reach 2	1	Trout	50	1.05	1.09	0.1	0.61	LG	LC	60	
7/27/2007	Reach 2	1	Trout	50	1.15	1.72	0.15	1.18	LC	LG	60	
7/27/2007	Reach 2	1	Trout	50	1.50	2.03	0.15	0.8	LG	LC	60	
7/27/2007	Reach 2	1	Trout	45	0.75	0.20	0.2	0.39	В	MG	70	
7/27/2007	Reach 2	1	Trout	40	0.45	0.01	0.1	same	LC	LG	60	
7/27/2007	Reach 2	1	Trout	35	0.35	0.08	0.05	same	LC	LG	60	
7/27/2007	Reach 2	1	Trout	45	1.45	2.01	0.1	0.15	MG	LG	60	
7/27/2007	Reach 2	1	Trout	40	1.30	0.41	0.2	0.27	SND	SG	70	
7/27/2007	Reach 2	1	Trout	40	0.95	0.11	0.5	same	SND	SG	70	
7/27/2007	Reach 2	1	Trout	45	1.40	0.02	0.5	0.02	В	LC	70	
7/27/2007	Reach 2	1	Trout	35	0.70	0.02	0.2	0.02	В	LC	70	
7/27/2007	Reach 2	1	Trout	40	1.50	0.21	0.15	0.03	LC	В	60	
7/27/2007	Reach 2	2	Trout	45	0.80	0.02	0.2	0.02	LC	LG	70	

Sultan River HSC Curve Observation Data: Juvenile Observations

Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
7/27/2007	Reach 2	2	Trout	45	0.85	0.23	0.2	0.19	LC	LG	70	
7/27/2007	Reach 2	2	Trout	50	1.40	0.19	0.2	0.12	SC	LG	60	
7/27/2007	Reach 2	2	Trout	40	0.85	0.69	0.1	0.41	LG	В	70	
7/27/2007	Reach 2	2	Trout	35-45	0.55	0.75	0.2	0.54	SC	LC	70	
7/27/2007	Reach 2	2	Trout	45-50	2.30	0.11	0.3	0.02	В	LC	70	
7/27/2007	Reach 2	2	Trout	40	1.10	0.60	0.15	0.43	LG	В	70	
7/27/2007	Reach 2	3	Trout	40	0.60	0.03	0.1	0.02	В	LG	70	
7/27/2007	Reach 2	3	Trout	35-45	0.40	0.40	0.1	same	LC	LG	60	
7/27/2007	Reach 2	3	Trout	35-45	0.55	0.58	0.1	0.4	SG	LG	60	
7/27/2007	Reach 2	3	Trout	35-45	0.45	0.12	0.1	same	LC	LG	60	
7/27/2007	Reach 2	3	Trout	50	0.95	0.29	0.15	0.08	LG	SC	60	
7/27/2007	Reach 2	4	Trout	40	0.70	0.21	0.05-0.1	0.08	SC	LG	60	sparse small wood
7/27/2007	Reach 2	4	Trout	40-50	0.40	0.14	0.15	same	LC	MG	70	
7/27/2007	Reach 2	4	Trout	35-40	0.25	0.12	0.05	same	MG	LG	70	
7/27/2007	Reach 2	5	Trout	30-40	1.30	0.06	0.2	0.06	В	SC	60	
7/27/2007	Reach 2	5	Trout	35-45	1.00	0.49	0.1-0.2	0.23	LC	SG	60	
7/27/2007	Reach 2	6	Trout	45	0.65	0.50	0.15	0.4	LC	LG	80	
7/27/2007	Reach 2	6	Trout	45	0.55	0.06	0.15	0.09	LC	LG	80	
7/27/2007	Reach 2	6	Trout	40-45	0.65	0.11	0.1	0.12	SC	MG	60	
7/27/2007	Reach 2	6	Trout	45	1.05	0.05	0.15	0.14	LC	LG	60	
7/27/2007	Reach 2	10	Trout	35-45	0.45	0.05	0.15	same	SC	LC	70	
7/27/2007	Reach 2	15	Trout	40	0.65	0.15	0.2	0.11	В	LG	60	

Sultan River HSC Curve Observation Data: Juvenile Observations


Date	Reach	# of Obs.	Species	Fish Length (mm)	Water Depth (ft)	Mean Column Velocity (ft/s)	Fish Position (ft)	Nose Velocity (ft/s)	Dom Sub.	Subdom. Sub.	% Dom	Cover
7/27/2007	Reach 2	15	Trout	35-45	0.50	0.58	0.15	same	SC	LC	70	
7/27/2007	Reach 2	30	Trout	35-45	0.55	0.30	0.1	same	LG	В	80	
7/27/2007	Reach 2	30	Trout	35-45	0.75	0.03	0.1	0.03	LG	В	80	

Sultan River HSC Curve Observation Data: Juvenile Observations

ATTACHMENT 3

HSC Field Notes

1628.05

June 7, 2007 2 06/07/07 Reach 2 Lower Sitter R. Spanner Survey Survey Spainer Redd # width (FA) Longth Depth Vel. Subst. mg/16/70 Crew: M. bagner T. Sullivan 3.7 8.5 0.88 1.46 R2 L #1 1.44 3.D 1.19 #2 6.D 11 7.25 3.5 1.20 1.64 步ろ 11 160 weather ; overcast up light rain 世川 25 5.5 0.78 0.95 4.5 3:22/293 55/16/70 3.0 6.5 1.70 when visitedity good - R2 4-5" \$6 1.40 3.0 75 2.69 160 1:7 3.5 1 7.0 1.68 2.59 Equipment: seriffen # 3602 prop. 5 A cal: 0175 Length: top of codd to better of sports (29) typh photo # 1 placeira mab by reads lovery 10/5 ‡2 Out In Time 8:35 3:30 43 1 Losley rt/Lt # 4 Golding. at d/s wast rodd # 5,6 gravel comp. 2ⁿ (206) 7,8,9 + next 4 redds Flow: Reach 2 - 180 cfs 1A + 900 cfs Reach ×w 121° 48.504 , r ~

4									1	5	
	Reach	2 Low	er Cont	i	6,07,07	10484	Photo Log				
Redd #	width	length	Depth	Vel	Sob,	, #	Des	printer		· · · · · · · · · · · · · · · · · · ·	
t.g	3,0	6,5		1.90	196726/80	TR-3 #10	- Leoking anos	the e	R2 60	Jan	
-9	3.0	2.6.0	2,40	1.70	11	1 # 11	- ·· d/s	mac w/c	p hoard		
10 not fle	3.0	6.0	1.80	2.19	11	±12 -	- " <u>Lt/R+</u>	inRo on	R-3	-	
Ц "	3.0	6.5	1.14	2.49	m6 55/16/90	13 -	- lushing games at	1 Ad. 5 12, 1	3,14		(°
12	2.75	5.5	2.00	1.55	55/16/60	<u>н</u> 14 -	- " d/s J ne	jsha	u/s side	& angle bar	
13 14 15	2.5	3,5	2.40	1.52	56/LG/80	±12 -	is from	new jam		P	
14	3.0	3.0	2.21	<u> </u>		* 16 -	look across of	Redol TR-	6 R2 n	pper	
<i>№</i> 15	2.5.	3.0	2.10	1.49		17 -	1. ys from	Just below	Div. Dau	<u> </u>	
	yell	ow capped	SHEVEN M	onhes at	+00						** *
·	4	skind (n= 2	<u> </u>								ç
۲ ج			~~~						-		
	reach	d u	ppen *								States
\$ 15	2.75	6.5	0.95	0.79	59/19 90				-		
L 19 19						-					-
		•			-			5			-
ne open og 1 til i Alex Alexandra det de somskelse	178		** *							ศัม -	-
					nr						-
1977-1979, F 1979 T I. (1977-1978) A.		500-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1									
······································				······	an a				•		- (k)
· · · ·					No. 1997 Marcold al						
21°	· · · · · · · · · · · · · · · · · · ·					-		4A 8 44			
÷					-				-		
,											·
10,000 ALC	and - Howels Account Prote Sector Systems Sou	an a	anna ann am an ann an tharachtairtean ann an an ann an an ann an ann an ann an a	tininan antalana mataona sa juga na mana	a a tha ta dhuan an a				T Territoria de la composition de la composition T		

•

-

.

. 1

.

٠

~

7,07 Jone 1A Reach Spanner Somer Leng th Septh Redd # wielth Photo 609 Vel Silst. fint 2.76 57/19 60 2.78 19/19 60 lodeig ofs from balon, Redds in RIA #1 7.0 2,5 1.80 #2 11 1.85 $-\frac{1.97/2.95}{3.13}$ #19 2.5 gross MRG w/ stick E clip bound 6.0 # 3 unable to Find flagged rock mensionet made ~ 8' 0/5 #2 #20 " . coress @ # 4 # 5 2.6 6.D 1.70 #4 6.5 1.45 2.4 #5 6.5 *(*, 2.6 1,40 プ み い (} 1.75 3.30/3.51 #6 14 u/s / down @ #5 5.5 222 2.5 11 #7 1.35 not flagged Willy sport / ~ 10' rt of #4 * flow at time of survey was v 900 cfs, flow at 1 time of redd construction was v 450-600 cfs * Data will not be used as ø. part of HSI curve development n 5

June 13, 2007 Sultan R. Spanner Survey Reach IA - PS to US Crew: A. Weybreight T. Sullivan weather: Overcast + breeze rain Water Vis. b. lity; good - better Than on June 7 by ~ 1 foot or more Equipment: Swopper # 3602 5A Prop 0175 [a LV R2 7:30 8:30 Time in: Time out: 11:45 Arr. R2 : 12:45 Flow: 561 cfs @ 10:00 per 16. U565 12138160

NE	AR -	TR-ã	2		9	1
Redd #	n;d+n	length	Depth	Vel	Subst	-
1	m:dth 5'	10'	1.4:	2.84	54.6	
<u>C</u>				2.61		
· · · · · · · · · · · · · · · · · · ·						
2*	6.	8'	1.5		54.6	k
Λ	12.11		1.0	2.82		
Hajacen	(D)redb	#1	on let	t Dank	lio king B	
- dom	15 trea m		nmar.red	by K	15	×
3,	10'	14'	1.1	2.33	54.6	
				2.34		
V5	of #	4				
	2'			1 90	E14 /	C Margar
4	8'	12'	1.	1.99	54.6	- AND - A
				1.10		
5*	6	8'	1.5	3,79	56.7	a and a second
	17					
				y old		and the second
	iy vne	asureb	one			AND INCOME.
				-		
		PT 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				
Diversity of the Diversity of the second statements of				70		

10 06/15/07 NEAR TR-6 Redd tt midth length Depth Vel Subst 6 3' 6' 1.6 1.53 56.5 Photolog"- Redds 1-5 1 - looking across from lefbank 1.54 "unconventional" reda s. te 3 4 - looking down stream Gubstrate looks big - Cobble, gravel, 5 - looking upstream boulder P3154 - P3158 7*-3' 6 2.0 1.36 56,5 Reads 6-7 los Koing across Pom left bank 1.38 unmarked and old redd - difficult close up? to real 6 9 - looking US to delineate - 100 King P P3159 - P3162 RS 10 -7 vhaible to find remaining two marked reads

" US of Oval track~TR-12	DS of Dral track ~ TR-9 13
Ped # Wisth length stepth velaity Gubstr. 8th 3' 8' 1.5 1.63 65.5	Real # und the length Repth Velocity Substr
84 3' 8' 1.5 1.63 65.5	Red # und the length Depth Velocity Substr. 10* 8' 12' 1.7 2.41 56.6
1.59	2.38
Unmarked Redd, relatively old but could have been one movied	unmarked but immediately (5)
9× 4' 10' 1.0 1.19 56.5	dannstream of redd # 11-100ks
	Same age - assumed to be other in Veda,
unmarked Redd, relatuely old but	
Could have been one morked	11 6' 8' 1.6 2.16 56.6
	2.08
Unable to find Marked reads	difficult to delineate, somewhat
Photos: looking across towards	12 4' 7' 1.5 2.17 64.5
11 1B with Aw ay Redol	2.11
12 looking US of Redd 13 looking DS of Redd	terry .
13 looking DS of Read	
P3163 - P3165	R. R.S.
215 Of COVAI LEVEIS	(10)
	Motos - 14 looking across at # 10*
Ď.	- 15 looking ds at # 11

-

{

,

**

.

٠,

14	001			er - s terminal								10	1
/		0.0	0	···								100005-104 0 CALLSTONE OF BUILDING 100	
ar no - 1 1		1 31 66	-P31	67									
						9					•		and price and a second
											10% -01 -05 MARANE-MARANEAMER (* 2000) 11 -070 1 -070 1	1997,1117 die 1. 1. august a	State State
			bi bhe									and the second	
							A A A SUMMARY AND A SUMMARY SUMMARY AND A		~				
* * * -	-				M an a and a a and a a and a a a and a a a a a a a a a a a a a a a a a a a				ana				
							ALLA ALANGUN DARAGANA BERTATI						(married and
	*												
·. ·· -													
				-					an				
													2
								All which is a subsequence of all we reasoning in the					
									ANNALL, AL A DESCRIPTION AND ALLOW TO THE	ANT NO ANT AN ANT AN A TANK AND AN A TANK AND			
													den meter
	·				·				A CONTRACTOR OF A CONTRACTOR O				
	·· -												
			· ·			L							
			a a										751 v
j													
							· · · · · · · · · · · · · · · · · · ·						a surface and a surface
k													the second
	1 100,7200 0000 0000 0000								activities and the second second			l	j.

(

10 07/2	7/07	Sultan	River	HSI D	evelopment						
				Surveys		Equip	nent	Smoft	er #	4099	
				F			, 1	Pro-P	4B(3))	
<u> </u>	bow: Awingh				[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Cul.bra	tion 1.	25	
			+ 5 4 Jr Hol)			Flow	@ US	69 6	age:	500 c fz	Ø
	mp. 13								1	:30 Am	
Vi	sitility	9' (fr	om Sec	hi lead	19					en day	15
	,					weat	her: n	nastly	Sunni	-	
Start.					/trusducer site						
	Work of	Read		0.12	d/s TR-1						
()-	20	162.		Partin	Deeth/	Dow	Sub Dow		Cover	Notes	
#	Species	length	(from Sob)	Nose V.	Mean V	Subs	Subs.	Dom	Cover		
- EX	Trout	45 Mm	0.20	50.07.	0.80/0.07	la cobble	1g Gravel	70		Feeding	/holding
A	\`	۷ ۷	\` 	0,19	0.25/0.23	<u></u>	× ¹	<u>``</u>		~ ~ ~	
TR12	Coho	60-70	0.3	0.03	1.95/0,04	Boulder	la Cobble	80	Boulder	15 05 0	1
	Trout	50	0.05	0.00	2.15/0.00.	Boulder	by Cobble	, 80	Boulder	holding	15'USTR6
		Tal ou	†					:			
	Coho	70	0.15	0.09	1.40/0.22	Sm Cabble	g Ginrel	60	-	holding / ed	dy@ Bolhead
772		50	0,2	0.12	1.40/0.19	· \ `	<u> </u>	.`	-	holding/eo	dy@Pool hood
	Head o	t					······	12	Satse	1.1/	
4	trout	40	0.05-0.1	0.08	0.7/0.71	in cobbe	55	60	Sm Wood	holding	
3	Front	40	8.1	0.02	0.6/0.03	boulder	1	70		holding	
	Coho	65	0.2		0.65/0.15	bouldol	la gravel	60		holding/	feeding
15	trout	40	0,2	11	0/5/		1 1	(1)	-		·
126	trout	45	0.15	0.40	0.65/0.50	3 (obble	ly gravel	40		holding	relirs.
6	trout	<u></u>	0.15	0.04	0.55/0.06	۸۸	Ň	~ ~ ~		1/	

{

,

10 7/27	Reach 2	(contd)			Depth /	Dom	5.6 Dom	7.	Cover	Notes	13
#	Species	length	Position	Nose V	Mean V	Subst.	5-65+	Dom			
30 60	Trout	35-45	0.1	Same >	0.55/0.30	la Gravel	Boulder	80	-	h/f	
30	NS - 1	V	~ ~ ~	0.03	0.75/0.03	· · ·		``		~ /	R:Ale
l	trost	40	0.1		0.40/0.52	19 gravel	Boulder	90	_	~ ~	margin .
١	trout	40	0.2	02	0.55/0.23	19 grave	lg cobble	70		··)	· · · ·
١	trout	50	0.2	0.49	1,60 0,27	Rouldor	Singrovel	70	-	···	
Ч	trout	40-45	0.15		0.40/0.14	1g Cobble	Mgravel	70		holding	ly boulder
end	et in	Riffle	2 - 24	50'US	of TRI					7	
Start	~ 50	ds o	A TR	22:	n Boulder	Riffle					
2	trout	40	0.1	0.41	085/0.69	la gravel	boulder	70		hold.	50' DSTRR
	tro-+	45	0.2	D.17	0.70/0.45	boulder	Mgravel	80	Bo older	hold	25 DSTRA
A	frout	45	°.L	0. OL	1.25/0.12	Doulder	M.glav.	80			11
1	Phot	0 # 1									
20-25	(oho	60-70	0.2	0.30	1.35/0.40	Doulder	Smgrav,	60		h/f	25 D5 TR2
	<u>\`</u>	11	0.3	0,14	1.55/0.41	<u>\`</u>	ч ,	•1	11	~	. \
	11	N	0.4	0.40	1.35/0.76	· · ·	<u></u>	<u>()</u>	. \		×
5	trout	30-40	0.2	0.06	1:30/0.06	boulder	4m. Cob.	60		hold	
(0	trout	35-45	0.15		0.45/0.05	5m (obble	19 (06	70		4	ONTR2
15	frout	35-45	0.15	Same -7	0.50/0.53	SM Cobble	14 (ob	70	-	h	~ `
2	trout	35-45	0.2	0.54	0.55/0.75	im (ob	19 606	70		η	~ ``
23	trot	35-45	D.1	Game 7	0,4/0.40	19 (06	la giav	60		h/f	15'US TR2
3	Coho	80-65	0,1	Samer	0.4/0.49	ly lob	M glav.	60		n/f	
				-	-						
	5 ¹¹					1 m				•	

.

,

(

20		-			Depth/	Dom	Sub Dom	70	Lover	Notes	Rippie
井	Species	length	Position	Nober	MeanV	Substr	Gobst	Dom	Cover	Notes	V
3	frout	35-45	0.1	0.40	0.55/0.58	Sm. Cor.	Lg. Gr.	60	-	h/f	25'USTR2
\	coho	60	0.1	0.39	0,60/0,50	ly Gr	Sm. Cob.	60		4/P	11
\	trout	50	0.	0.6	1.05/1.09	la Gr	1960	60	_		1.1
<u> </u>	trost	50	0.15	1,18	1.15/1.72	1900	la grav	60	-	. `	.7
{	trout	50	0.15	0.80	1.50/2.03	19 grav	In Cob	60		~~	1
5	trout	35-45		0.23	1,00/0.49	19. (06	Smgr	60	-	15	25 DSTR3
	trout	4.5	0.2	0.39	0.7.5/0,20	boulder	Magr	70		۲.,	١,
.)	Front	40	0.	Games	0,45/0,01	ly coble	1951	60	Factor	holdu	DSTR3
)	trout	35	0.05	Game-s	0.35/0.08	13 Cobble	la gir	60		holdin	
3	front	35-45	0,	Same 7	0.45/0.12	1.	11	λ, îs		feeding	
4	front	35-40	0.05	Same -	0.25/0.12	Mgrau	15 grav	70	**************************************	44-4	10'USTR3
4	troot	45	o.t-			K	Photo	#2	P	DOLTA	LOUT
	trout	45	0,1	0.15	1.45/2.01	Mg Rau.	109 9 50-	60		hiff-4	DS LWD FTR3
2	frout	45-50	0.3	0.02	2.30/0.11	Boulder	ly coble	70		h	TR3
	tro-t	40	0.2	0.27	1.30/0.41	Sand	Sm Grav	70		<u> </u>	10'US TA3
	trout	40	0.5	Game->		۱ <u>۸</u>	N. 1	1111	-	h	>>
6	trout	40-45	0.1	0,12	0.65/0.11	Sm Cob	m grav	60	-	5	BS DSTRS
1. March 10. As a 1994 s 1 MAN WARMAN AND	S Phot	0 # 3									
3	Coho	60-90	0.15	0.14	105 0.05	13 600	lg grun	60		9	TR 45
6	tirout	45									
6 3 7	Cohō	60-80	0.15	0.43	1.10/0.60	19 gra-	border	10		h	1
2	tout	40		~		-					
3	trout	50	0.15	0.08	0.95/0.29	13 glav	Sw cobi	60		5	111
	Rho to	44	l.								
	,										· · ·

22					Depth/	Dom	5.5 Dom	7.	tores		20
#	Species	length	Positio	NoseV	Mean V	Subst	9.55t	Dom	Cover	Notes	
3	Coho	7ŏ	0,1		0.8 0. Dest.	ſ	M Grav	30		h 6	O DSTRG
1	(oho	65	0.2		1.25/0.02est,	Boulder	M.Gar	80	~	1	DSTR6
7	Photo	#5	ų		1	•					
R	tro_t	45	0.5	0.02est	1.40/0.02est	Boulder	lg 66	70	-	Ч	1
	trout	35	0.2		0.7/0.02 est		[9(06	70	-	h	
1	trout	40	0.15	0,03	1.5/0.21	g. Cobble	5 oulder	60		h	<u> </u>
			1						001		
Kega	=h	A	5 tart	at t	Tienes.	Esterno	Boulderl	cobble	Riffe		E K UK
`	'	Started	Work K		Stream	Bifectly ac	1059 From	562 "	outleten	RBenK	1005-003
20	Coho		D.1-0.15		0.6/0.83	Smlobble	la Cob	70	-	hR	bank R.A.
40	trout	35-502			0.6/0.12	1	"	11	And A CARL LAND COMPANY AND A CARL AND A		
b	th SP	ec. 25 d	istr, but	- l over		ions abou	10				
2	trout	35-40	0.3		0:45/0.20	[/	11	11		h	
1	scopo	70	0.1		1.7 /0.0 Rez	Bolleber	la Colob	60	LWD	Ч	
	Frat	40	0.3		Liy /0,10	Bulder	14 (06)	60	Banklo	idercut) h	*.
(- Phort	o #6				1				1	
Ь	trout	35-45	0.2	Lane-9	0.65/028	5/159 Colb.	Ly Cob	60		4	
].	trout	200-40	0.2		0.7/0.83	11	i!	70	_	4	
5	trout	35-45	0.2		0.8/0.34.	11	\` \`		-	4	
1	trout	40'	0.25		0.5/0.10	~	۲۰,	· · ·	-	h	
}	frout	40	0.3		0.6/2.50	٢/		×*	_	4	
Λ (trout	35-45	0.5		1.95 / 0.5:8	Smicoh	1.6	60	Veg	<u>м</u> .	
2	trout	12	٠١	• 1	0.85%.42	1	1	\ `	.\	Ŋ	
1	Lono	70	0.3		1.75/0.24	<u> </u>	×1	~	<u>``</u>	Ŋ	
1	(oho	70	0.7		1.90/0.30	1j	11	N.N	××.	5	

.

.

(

	24 4/2	2/07 HS	I SNO	Kil		1		Dom	5.16 dom	070	(\ <i>\</i>	25
	tt l	30.	length	Josihor	Nose	pept /	near .	Subst	4ub4t	Dom	(our	Nots	
F		trout	35	0.2	sour	.0.5/0	,35	4m (6b)	LG	60	<u> </u>		
	1	Coho	70	0.6	hang	E.25/0	02	L6	·LC	60	Veg (overh	a) h	
	6	coho	70-90	0,25	0,18	125/0	,19 1	17	11		NOOD	h	
ALC: NO.	l	trout	.40	0,9		1.25/0		<i>L</i> ×	<u>\`</u>	1	Veglovelle	Na	
ALCONTRACT.		Coho	15.	0.Z	0.02.est	0.8/0	0.02est	LG	.5,14	80	cut bank	4	
		> Head	of	Rift	!le ~	50		15 of	5C-1;	nlet			2 10. 170 - 11. 101 170
	60 5	Coho	65-100	0.8	Game	1.8/0):]	Smlob	LG	80	overhang	h	**************************************
	\rangle	Coho.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	02631.1	0.02est	22/0	ozest	.) //	~ ~ ~	<u>``</u>	Veg w/	4	
ta haint aire Sairt an air	. 6	rcoho	* XX	0.6- 1.1	Same	1.9/9	0.6		``	<u>, 1</u>	cut bank	h	
	1 . 2	.CHN	70	0		i , `,	1 m-1			ι \ 	100+5	- \	0)
Contraction of the second	2555	Collido	65-90	0.6-1.1	0,0205	1,55/0	,07		××.	· 、	× .	h	
	2	-Loho	~~	0.3	Same	1.1/0	69	•	<u></u>	<u>\</u>	<u>, </u>	·M	
	х -	Photo	#7	(previou	15 6	linel	\rightarrow						w
Contraction of the local division of the loc	~	10 0	15 0	P 56-		Vlet	· · ·						
A COLUMN TO A COLUMN		trout	35	0.4	Game	0,95/0	2,5	9mlob	lg Gr	70	•		
A TANK	3	trout	35-45	-2-20.3	Same	0.7/	6,47.		1.	- \	- '		
or contraction	:	trout	45	0.30.2	Same	0.55 /	. 06	11			\$	-	·
Solution of the second s		front	40	0.8	Same	1.8/0	.81	17	<i>, ,</i>		Veg		
	· (front	40	1:7	0.0204				• •	• {	VCgtW		
States of the second	-112-(Coho	65-85	0.5-1	Same	1.95/		1960	y Gri	60		-bod + loots	h
Contraction in the local division of the loc	- 40-3	Coho	、۱	0.4-0.8			0.06		11	60	Vey +		<u>ч</u> :
State of the second second	4	Toho	65-85	0.3-0.4	Same	1.3/0		~ \ \	N N	~~	Meg or	rev having	h
- Sector Instance	20 (coho	65-85		0.02-0		· ozest	Smilob	lg Gr	60	The second s	ut bank	
a state of the second se	3	coho	11	0.6 - 1.0	0.02e2	11.9/(2.02est	[r	<u> </u>	× * *	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
A CONTRACTOR		Above	101	124	10- [φοίν	, 4	2f 5C	-1 in 1	et- Ph	sto = # \$	B - From R.	speshing

.

	26 #	50	length	Position	NoseV	Pepth/ Mean V	Dom 5, be	5 Gub Dom	70 Dia	n (over	Notes	4
		(oho	70	0.3	Oiozest	1.45/0.03	la Cob	Sund	60		rood V	1.5
	A start is a	truct	40	0.45	Same	0.55 0.02 est	Gurlob .	Smgr	60	Veg + 1	rod 1	1
		trant	40	-1.00	0.02est	1.20/0,0200	19,606	5m 600	60	houd		-cuery
	4	frout	40	0.2	Sume	0.4/0.24	lg, grav	ly Cob	60	_		30
	2	Pho	to #	9.			2			-	a management of the local sector of the local	btur
Į.	10 5	trout	4.0	0.3	And a second sec	0.6/0.10	Gm cob	lg grav	60	Vey		TR-2
H.H.	2	trout	40	0.3		0.5/0.27	5m cob	19 grav	60	Veg	a second of the	- TR-3
	2	trout	40	0.3		0.6/0.13	· · · ·	× 1	<u></u>		V.	The
	<u> </u>	trout	40	0.3	6002 0,020	10.8/0.0205	۱۸	11	1.	5		
	4	Trat	40	0.3	Oiozest	0,7/0,02est	9606	GMCOD	70	-	Q TR	3
	2	trut	35-40	0.05	where the second s	0,25/0.02est	typest i		/1	-		
	2	trout	35-40	0.05		0.30/0,02est	· //	1	٧.			
	$\left \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1$	trout	40	0.05	frame	10/0105	17	1:	· · ·		5'05-	
	3	trout	35-40	0.05		0,2002051.		N.N	· · · ·		10' 15 1	R3 .
	-\	Front	35-40	0.4	1	0,9/0.43	9m (.00	lyCob	60	Veg		
		troot	35-40			0,7/0,21	<1		<u> </u>	veg	6. Therefore and 10000 and 10 to 10000 and 10000	
	· 5	410-t	25-40			0.55/013		. !	· ·	veg		
	2	+ror+	35-40	0.25	T	05/0.23		, .				
		tront	4910	0.15	Some	0.3 0.03						
		077				1 0	0			-		
H	End	r g	at i	owstre	en en	g ot	Rober =	FSland	\sim	00' U	SOFT	R3
		· · · · · · · · · · · · · · ·	Te	18:11	10/2	······································	Vol site		• ***			
					V		Vebcity	est mate	d @ 0.	o2 fes w	en too Slow	, to move prop
				b.1.+1.	1.		<u>n</u> -	1 fla. Cate	5 tris	1 069	erved h	olding
S	"Ve	g indice	ites o	verhang	ing Kipal	an Veg	-	Assume	"h" un	less of	helmise	noted
ALC: NO	and the state of t	รู้ พระกรุษยาย จากการจุดังการสารสารสารสาร	 ครั้งสะเสียงกระสุรรรษณ์ ###################################	 nangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoi Nangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeoistangeois	 						NT-SCHOOL STATE	

"Outdoor writing products for outdoor writing people."

to se to stream de la defentier anti-ficiente

CI. Dat

GTFI

1. J. B.

FR. I

121.... f.

ALC: N

EL.F

The second

RECYCLED / RECYCLABLE

This cover is made of 50% post-consumer recycled material.

"DuraRite" - is a synthetic paper that is ideally suited for use in extreme weather conditions. A full line of "DuraRite" notebooks and loose leaf sheets are available. Custom printed "DuraRite" books, forms and tags can be made to meet your specific requirements.

"DuraCopy" and "Rite in the Rain" all-weather copier papers are also available which enable you to create all-weather forms, charts and maps on your copier or laser printer. See your dealer or contact the J. L. Darling Corporation for details.

a product of

J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA (253) 922-5000 • FAX (253) 922-5300 www.DuraRite.com

tan River H 6 T WATERPROOF LEVEL No. 613 Book

File: 1628.05

Sno PUD Jackson Project m. 8 GT 70 = Instream Flow Study AL EL 628.05 00

WATERPROO

Name Ra Resource Consultants

Address	15250 NE 95+6 5+
	Redmond WA 98052
Phone (425) 556-1288

Project Sultan River Instream Flow Study (1623:XX)

"DuraRite" is a synthetic paper that is ideally suited for use in extreme conditions, making it possible to write clear, legible field data in the worst kind of weather. A full line of "DuraRite" products are available.

a product of

J. L. DARLING CORPORATION TACOMA, WA 98424-1017 USA www.DuraRite.com

	CONTENTS		8/8/07
GE	REFERENCE	DATE	Weather: light Rain ~60°@ 6:30am crew! A. weybright - snorkel
1	· · · · · · · · · · · · · · · · · · ·		T. Svllivan - Notes/Velocity
		· · · · · · · · · · · · · · · · · · ·	
	·····		In: 8:00 0 vf: 18:30
			Water lemp: 12C
			sechi q'
			Started on secondary Channel @ Rose I.
			working upstream
			- Suoffer: 4099
			Prop 2:4B
			Ca. 125
	ан ан аймаа жана так ан алан улсан. Так жана улсан ал		
	B		
		6	

		running and a second	,	1. Depthi/			Dom/s.b	7.	Pist. Cov/	Map		3	<i>W</i> .
065#	# fish	Species		100-01	Length				type	Section		2	
	[b -	4	0.5/.3	45		SC/LC	60	0/61945	A	Marg.n (R)	
R.M	÷ (TRT	0 3/ Sam	el.0/.25	40		*	<u> </u>	-	<u> </u>			•
3	3	TRT	.3/5-me	0.7/.19	40-55			<u></u>		M	~, 		
Ц		TRT		0.95/.33			SC/LG	60	-	A			
5	1	TRT	# 4/same	0.5/.06	45		4C/LG	60		<u> </u>	//		
6	ج ج	TRT	. 2/ sam	0.3/.08	45-50		5C/LG	60	O/SWD	A	7		
7	3	TRT	.2/5	0.51.03	40 - 50		SC/Lb	60	0/swp	A	~ ~ ~		
8	. 1	TRT	.2/5	0.4/202	50		L6/SC	60	3/5~0	A	<u>.</u> .		
9	t	TRT	.2/5	0.55/.22	45		*	~	2/5~0	A			
0		TRT	.2/5	0.4/.08	55		~		;_	A			
[]	3	TRT	,215	0.5/.25	45-55	Ć	SC/LG	60	-	Ą	۱.		
12	3	TRT		0.5/.30			.//	~ ~ ~		A			
13		TRT	7	0.75/.72		·	26/SND	60	3/Bank	A			
14	2			0.3/.27			LG/SND	60	1 / Bank	A	. 1		
		1					1	2			Margin	R) - ON	
15	- -	TRT	.21 5	0.6/30	55		L6/5L	60		ß	L TR		
16		TRT	.2/5	0.5/.35	45		۰, ۱	60	-	ß	5		
17	I	TRT	•	0.45/.20	50		1 . N	13		B			
18	. 1		1	0.55/.26	70		56/56	60	2/Bark	B	~(
19		CHO	.2/5	0.55/.38			LG/MG	60	2/pank	1	~ N	A	
20	4	TRT		0.5/.40	40		()	ί.	3/Bank		1		
21	l	TRT	.2/5	0.5/~.02			1	1	-	B	~ ~ ~		ana yan
22	3		-215				L6/5C	60	2/orl Bra	the B	ς ۲		a salariti kasa
23	2	TRT	214	0.5/.07	45		11	j	1	nch B	~ \		- -
		1 [w.al	12				-				
				:							And and a second s	1))
· ·	and the second	na an ann an chuisean stráobhailteár		n en son en	an a	i nave states and	Address of the second second			an Alimente de la compañía	and the second	Computer Version of Con-	
	-		U.S. CARL		, Star and								

5) plactos Map Sections A - secondary Channel on R side - Section A looking 2 - Section B Looking . UC OF Roses Island - RUN 3- Section C looking US 4- Section D looking US Depth 1.1 2. Upper Thatney Mean V 2.55 5- Section E Looking US Depth: 1.1 2 Lover Thulnen Megn V: 1.93 } 6 - section F looking us Ry No Fish on 4 bank or Middle - 0 65 # 88-90 - Section H lookingus B-Secondary Channel-Rose's Island 10 - Section I looking US Starts Asend of R. Ffle and - section J looking us includes TR4. Directly US of Spection A 12-065# 101-104 Habitat: R. P. Ple/RUN (- Secondary Channel-Rose's Disland Starts 1.5+ US of overhanding (edar (R bank) - Directly US of Section B. Startge hulfway between TR'4+TR5 Habitat: Pool/Glide Endy at base of Riffle below TR5 Thalwey @ Mig Reach > S Dep Th: 2.4 A STALL 2 Mean V: 1.38 Lower thalway (Depth: 1.1 Ineanv: 0.79

		annas in 1993 in 199		and the second secon			1		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ليتواكر والمتحادث والمحاص			and the second
/	6 .		,	Pos, tion				Dom /	70	Pist. 1	Map	l l r r	(\mathcal{T})
	055 井	#.f.sh			MeanV	Length		500		COV. TYPE		Notes	
	24	1	TRT	.2/5	0.5/15	45		SC/LC	600		B	M.d - 01	TR4
,	25	3	TRT	.3/5	0.85/.28	40-50	W	LC/5C	60	-	B	~~~~~	
-	26	3-	CHO	1/5	0.7/.34	- 0 0		LG/MG	60	0/500	B	Margin(L)	- on TRY
	27	3	Сно	.2/5	0.65/.40				.56	1/5~0	<u> </u>	<u> </u>	
1	28	2	СНО	.2/5	0.65/. 32	× x .			60	1/5000	<u> </u>	``.	
-	29		TRT	1.2/5	:75/.22	50		56/16	_60		ß	M.d~6	OUSTRY
	30	2	CHO	.3/.5	7131.66	65-80		L6/5C	60	O/Rooty	۷	M~g.n(R).	~200 DSTR5
	31	1	CHO	,3/.64	1.35/.40	00		``	. \>	O/Roots	C	~~~~	
	32	6	TRT	2/5	.4/~.02	35-45		5C/26	60	1/Veg	C	Mary n(L)	~150'DSTR5
	33	3	CHO	.25/ 5	,75/.23	65-80		LG/LC	60	3/Bank	٢	<u>×</u>	······································
And a subsection	34	3	CHO	.25/5	.45/.15	.65:-80.		LGBC	60	2/Bank	(۰۱	
	35	1	TRT	2/5	.5/.85	45		SCLLG	60	-	P	Mid on	TR5
くないない	36	[TRT	.2/3	.61.32	45		56/66	60	-	P	×.	
	37	L	TRT	-215	.9/.74	45		50/26	60		D)	In 3°C	hannel
	38	l	TRT	.3/5	.75/.11	45		SC/LG	1	0/OH Veg	DL	On TR	5-
	39		TRT	.2/5	1.2/.03	50		''			\mathcal{D}	middie	0432
	40	l	TRT	-2/5	.3/.15	50		11	<u>, , , , , , , , , , , , , , , , , , , </u>		0/	Chamic	
tool () one	41		TRT	.25/5	. 45/.26	50		L6/SC	`\	0/04	E	Margin (-) ~ 25'
	42		TRT	.15/5	.3/.13	45		. <u> </u>	11	0/0H	E)	US of	Conf Duce
-	43	[TRT	:15/5	.4/.19	50		~~	17	2/Bank	E		
	44		TRT	.15/5	.5/ .89	50		EG/LC	60	-	F	Midink	Chane
	45	l	CHO	.5/5	2. 10.25	65		96/20	1	1' / LWO		port a	E aplit
	46	l	C40	1.9/5				SCILL	L,	2"/LWD		× 1	
í	17	l	CHON	.015	2.60.51	(5		10 1	ø	2"/100		/i *	ĺ (
The survivant	46 47 48	ſ	(40)	.8/5	2.6/0.83	70		a/11	ιi	3"/100		11	u
ĺ	10	. I	-110		0,0,83	10		. /		1/LWD			

/	3) 045 H	#fish	SPEi,a		Depty/ Mean V	length		Dom/Sub	70	Digt/ CoverType	Mup 4ection	Notes	Ð
	49	· · · · ·	CHO	.2/5	0.35/0.23	65		LG/MG	60	0/OHVES SWD	E	RB BE	6 ylit
-	50	l	TRT	12/5	0.35/0,23	40			· · ,		,	F. I	1 1
	51	. (TRT	.2.15	0.5/0.54	45		3	<i>'</i> '	· ·	1	ĸ	
3	52	١	CHO	.6/.39	3,01.47	70		SCILC	60	2/LuD,	1	poul .	ELSPlij
	5 <u>3</u>		CHO	1.2/39	3.0 .47/3	970		<i>د</i>	۱ 		7.*	ur .	15
	54		CHO	1.3/024	2.97.60/24	1570			. 1 2	2/LND	E	<u>~</u>	1
	<u>5</u> 5		CHD	2.0/.14	3.3.5%,14	75		B/LC	~	OLUD	E		۰r ,
	56)	CH^{O}	1.81.26	(2.871,41,1.2	6 85		B/LC	11	1/LWD	Ē	1,	۲.
	57	1	Tro. +	0.3/0.08	2.5/0.66	250		8/20	11	0 j/ino	ŧ.	to: "	1,
	58	. 1	loho		2.8 0.53/0,03			B/5C	ir	1/wp	E	.1	
	51	2	trout		T.3/0.36			SC/Mlg	60	-	E	FR. OF	L Spl.7
	60	1	+++++++++++++++++++++++++++++++++++++++	0.2/5	,45/,86	50		LGISC.	60		Ē	Riffle ,n	
	61		TRT	0.315	.45/.17	35		5C/LG	160	0/SuD	E		RSpl.+
	62	1	Trout	0.3/0.6	72.5/0.59	120		SC/LC	60	o/h vog	<u> </u>	Ron R	split TRI
	ل ک	1	co ho	0,5/0.85	2.5/1.71	80		_1 / 1'	- (1	(.	E	• • •	" dis TRi
	14	(Coho	0.4/0.1	6 2.4/1.52	100		a/ .e	¢	<i></i>	E	20	" d/s TR1
	65	5	Coho	0.4/-	1.7/0.23	65-85			11	Pan k	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	" d/s THI
	66	З	coho	· · ·	1.9/0.14			"/ "	• 11	9' bank	Ę	"	d/sTR(
	67	10	CHO		1.5/~.02			BILL	<u>\</u>	O/LWD	E	\ <u>\</u>	1
f	68	10	СНО	0.4/5	1.7/,09	65-85		\\ 		0/LMD	Ý		• •
	69	Ĺ	front	· .	1.5/1.24	1.50		56/24	80	0/0WA	F	Lisk of	- aplit.
1	70	1	trout		31.45/1.49	150		sc/cy	ซึ่ง	<u>"/"</u>	í:	Hend of	1 sight
	71	1	front		1.4/1.18	135		Sc/24	00	2/2010	<u> </u> E	;	or
	72	3	Colw	0.2/0.24	1.5/0.69		° 📥	<u>u/n</u>	r	For-	t.	t.;	
	74	(Coho	0 2/1.27	1.4/0.58	70		et pro	-	27-w0	ť	je	-
/	71	·	: Coho	0.2/6.26	1:15 /0.60	75		11 gr 3-	ir	12 1. WD	<u>لا</u>	11	

ン

10 (Π) Beging @ Olide ~ 50' VSTR3 Map sections (contil) Ends @ Head of glide ~ D-secondary Channel on R Sidest 300' DS OF TRG Rose's Igland - ends Section comprised of at TR5 Hub: Riffle/Cascade habitat unit (Glide) E- SC 3 Starts at conflience I - R.Ffle/Run Sequence ul munistem Habitat: Riffle u/sm Pool Follows L channel + R Channel Riffletter sequence **9** 5-EARS Above Island - R. Pfind in Side Channel (R) up to split Runs From confluence when stem Ends ~ 60' US OFTRI Lower Thaluca (R Channel Gpl. F) F - Glode transitions into ly Paul Depth: D.6 Val: 1.47 Stavits ~ 60'us of TRI Ends below Riffle DS ofTR2 Lower Thalling USOF Splitnean K -Vool 7 10' with ninimal velocity Depth: 10 Dsendofsc 6 - Begins at Riffle at head Val: 166 of Section F Mid Thalway (middle of Pool Transtons to Run @ TROD Depth: 3.7 Birth I Ends ~ 50 ft US of TR3 @ headof Riffle vel: 0.61 (bottom) No Fish observed 0.79 (TOP) T. I.

A. C.	D obs#	# Fish	Spec.es	Position /	De p".	Le yth		Don/ Sub	0/0	Dist/ Cov. Lype.	map section	Notes	(B)
	7-5		Coho		1.1/0.2	75		Selve	60	1/2000	TE	tlead e	f is split
	76	. (tro-t		1.1.1.1	130		11/10	"	2/200	C	The love 5 2	15= 1.1/1.23
	77		• •	/ ,	1.25/.08	55		BISC	60		E	ONTR	. 1
	78		TRT	.3/4	.71.15	55		B/SC	60	2/Bank	Ē	ONTR	WWW, L.T., WHI VISIAL and Mr. 11, Stade-store and
	74	l	TRT		1.5/1.96			B/LC	60		5	~60'0	TRI
	G.,	2	СНО		0.8/.06	SO		LC/SC	70	3/Bunk	F	Margin (L)-G1.de
	8)	1	TRT		21.75/-18	60		BILC	90	2/Bank	F) - Glide
	61	538	Colo	1 7 10,15	3.1) 0.37/ D.1.5			LC/52	ティ	01 ofth	1	LB/ the	lucy-Glide
	50 F	F= 8	coh	1.010.27	3.6 0.49/	65-85		11 / 11	11	of Ven).	15/4halwes	5
	33	225			5.0 0.2/0,20			"/ !!	1.0	0 . J. In.		<(11
	84 83		(oho	/	3.6 0.42	90-85		x	tr.	01 "	n () 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.	1.
		\$ \$	coho	1.2/-6. 6.8/-	3 9 5.33 6.05E			"/"	11	ò/ 'I	na v n	10	57
		6 4	colo	1.4/.	3.95 0.58	An- 85		i /	ie .	0/11	p-	. / .	· /
ļ				.215	.95 /~.02	65-100		LC/B	60	0/04	H		- 10'DSTRY
	23		C40 (40	.3/5	1.15/~.02			 \`			·····		glide
	31			<i>, , , ,</i>				 \`	1.	× ,			JUNE
	<u>.</u>	13	LHO	.4/5	1.35/~.02	40	-	LC/SC		-	<u> </u>	Marg (R	RUN
	41	2	TRT	.1/,5	0.5/ .29			SC/L6	60	3/Bank		ma (.	<u> </u>
1	92	2	TRT	.\/S	,6/,40	40-50		LC/56	60.	0/04 veg 0/64 veg	 	plaigin (L) R.ffle
	:1)		TRT	.3/5	1.4/.08	50		11	60				·
	91	1	COHO.	.5/5	11	75		<u> </u>	//	Q ··	1		
	95		TRT	,4/,5	0.8/ 05	150			. //	.\	Ţ		
ľ	96		(CHN)	.4/5	1.4/.12	70		<i>\</i>	<u> </u>	N			BA
	12	(CHO	.3/-	1.1/0,39	70		<u> </u>		-	I	۲ ۰	
ŀ	11-8 99		CHO TRT	. 4/-	1.2 -42	70		TCLIC	10		t		
	99	2		.3/5	1			6110	10	-	1	Mid~2	O'PSTR6
ľ	100	5	TRT	.2/3	0.11.02	35-4	5	SCILC	60			L Marg. y H	045,0

.

103 1 $7RT$ $1/5$ $6/.$ 104 2 100 $1/5$ $6/.$ 105 1 $7RT$ $a/5$ $6/.$ 106 1 $7RT$ $a/5$ $6/.$ 106 1 $7RT$ $a/5$ $6/.$ 106 1 $7RT$ $a/5$ $6/.$ 107 1 $7RT$ $a/5$ $6/.$ 107 1 $7RT$ $a/5$ $6/.$ 108 1 $7r4$ $0.7/.5$ $6/.$ 109 1 $7r4$ $0.5/.5$ $1.2/2$ 110 1 $7r4$ $0.5/.5$ $1.2/2$ 110 1 $7r4$ $0.5/.5$ $1.0/e$ 113 10 $CH0$ $0.6/.5$ $2.7/e$ 114 10 $CH0$ $0.8/.28$ $3.6/.$ 115 10 $CH0$ $0.8/.28$ $3.6/.$ 116 10 $CH0$ $1.8/.59$ $3.6/.$ 117 10 <t< th=""><th>24 50 05 70 05 55 04 75-85 06 45 33 40 .70 45 0.70 45 0.70 50 .77 45 0.75 50 0.77 70-80 0.05 65-100</th><th>Dom/ 50b LC/SC 11 11 11 11 11 11 11 11 11 11 11 11 11</th><th>60 11 11 11 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80</th><th>Cov. type 0/04 0</th><th>JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ</th><th>R. FALE NO II II R Ehanne II Als ene II II M. J. Roo</th><th></th></t<>	24 50 05 70 05 55 04 75-85 06 45 33 40 .70 45 0.70 45 0.70 50 .77 45 0.75 50 0.77 70-80 0.05 65-100	Dom/ 50b LC/SC 11 11 11 11 11 11 11 11 11 11 11 11 11	60 11 11 11 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	Cov. type 0/04 0	JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	R. FALE NO II II R Ehanne II Als ene II II M. J. Roo	
103 1 TRT $1/5$ $6/.$ 104 Q (HO) $1/5$ $6/.$ 105 1 TRT $a/5$ $6/.$ 107 1 TRT $a/5$ $6/.$ 108 1 $Tr/$ $0.7/.$ $1.0/.6$ 109 1 $Tr/$ $0.7/.$ $1.0/.6$ 110 1 $Tr/$ $0.5/.$ $1.0/.6$ 111 1 $Tr/$ $0.5/.$ $1.0/.6$ 113 10 CHO $0.8/.5$ $3.6/.$ 114 10 CHO $0.8/.5$ $3.6/.$ 116 10 CHO $1.8/.57$ $3.6/.$ 117 10 CHO $1.8/.57$ $3.6/.$ 118 3 CHO </td <td>05 10 05 55 04 75-85 06 45 33 40 .70 45 0.73 45 0.73 45 0.73 50 .77 45 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.75 55 0.75 50 0.75 50 0.7</td> <td>"/" "/" "/" "/" "/" "/" "/" "/"</td> <td>11 11 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80</td> <td>1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/</td> <td>J J J J J K K K K</td> <td>11 11 11 R Ehanne 11 R Ehanne 11 11 11 11 11 11 11 11 11 1</td> <td>Caplif of Pool in in in in in in in in in in in in in</td>	05 10 05 55 04 75-85 06 45 33 40 .70 45 0.73 45 0.73 45 0.73 50 .77 45 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.73 50 0.75 55 0.75 50 0.75 50 0.7	"/" "/" "/" "/" "/" "/" "/" "/"	11 11 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	J J J J J K K K K	11 11 11 R Ehanne 11 R Ehanne 11 11 11 11 11 11 11 11 11 1	Caplif of Pool in in in in in in in in in in in in in
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04 75-85 06 45 33 40 .70 45 0.73 45 0.73 45 0.73 50 77 45 0.73 50 0.73 50 0.73 70-80 0.05 65-100	"/" "/" LC/SC LC/SC SC/LC "/" "/" "/" "/" BR/SC	(1 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	- - - 2/Lmg 0/Lmg 0,5/Lmder	J J J J K J K K K	d/s ene 11 R E hanne 11 d/s ene 12 12 12 12 12 12 12 12 12 12	r r r r v v s of Poalf r v s of v of v s of v v v v v v v v v v v v v v
105 1 TRT $a/5$ $b/.7$ 106 1 TRT $a/5$ $b/.7$ 107 1 TRT $a/5$ $b/.7$ 108 1 TRT $a/5$ $b/.7$ 109 1 TRT $a/5$ $b/.7$ 109 1 TRT $0.7/.5$ $1.0/.6$ 109 1 $Tr4$ $0.5/.7$ $1.0/.6$ 110 1 $Tr4$ $0.5/.7$ $0.0/0$ 111 1 $Tr4$ $0.5/.7$ $0.0/0$ 111 1 $Tr4$ $0.5/.7$ $0.0/0$ 111 1 $Tr4$ $0.5/.7$ $0.0/0$ 112 4 $(abro 0.5/.5)$ $1.0/.6$ 113 10 $CH0$ $0.8/.5$ $3.6/.6$ 114 10 $CH0$ $0.8/.5$ $3.6/.6$ 115 10 $CH0$ $1.8/.5$ $5.6/.6$ 116 10 $CH0$ $1.8/.5$ $5.6/.6$ 117 10 $CH0$ $0.6/.76$ </td <td>06 45 33 40 .70 45 0.73 45 0.73 50 .77 45 0.73 50 0.73 50 0.73 70-80 0.05 65-100</td> <td>// LC/SC LC/SC SC/LC "/" "/" "/" BR/SC</td> <td>60 60 80 80 80 80 80 80 80 60</td> <td>// </td> <td>J J J K K K K</td> <td>d/s eno</td> <td>r r r r v v s of Poalf r v s of v of v s of v v v v v v v v v v v v v v</td>	06 45 33 40 .70 45 0.73 45 0.73 50 .77 45 0.73 50 0.73 50 0.73 70-80 0.05 65-100	// LC/SC LC/SC SC/LC "/" "/" "/" BR/SC	60 60 80 80 80 80 80 80 80 60	// 	J J J K K K K	d/s eno	r r r r v v s of Poalf r v s of v of v s of v v v v v v v v v v v v v v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06 45 33 40 .70 45 0.23 45 0.20 50 .27 45 0.45 50 0.45 50 0.17 70-80 0.05 65-100	"/" LC/SC LC/SC SC/LC "/" "/" "/" BR/SC	60 60 80 80 80 80 80 80 60	- 2/Lwg 0/Lwg 0/Lwg 0.5/Lunder	J J J K G K K K	R Ehanne	r r r r v v s of Poalf r v s of v of v s of v v v v v v v v v v v v v v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23 40 .70 45 0.23 45 0.20 50 .27 45 0.43 50 0.43 50 0.17 70-80 0.05 65-100	Lc/sc Sc/LC "/" "/" "/" BR/SC	60 80 80 80 80 80 80 60	2/Lmg 0/Lmg 0.5/Lmder	J JK JK JK K K	d/s eno ec re	r r r r v v s of Poalf r v s of v of v s of v v v v v v v v v v v v v v
108 1 T_{rf} $0.71 - 1.0/.0$ 109 1 T_{rf} $0.71 - 1.0/.0$ 110 1 T_{rf} $0.51 - 1.2/.0$ 110 1 T_{rf} $0.51 - 1.2/.0$ 110 1 T_{rf} $0.5/.0$ $0.0/0$ 111 1 T_{rf} $0.5/.0$ $0.0/0$ 112 4 (0.23 45 0.20 50 27 45 0.48 50 0.17 50 0.05 65-100	SC/LC "/" "/" "/" BR/SC	8. 9.0 9.0 3.0 ED 60	2/Lmg 0/Lmg 0.5/Lmder	JK JK JK K K	d/s eno 11 11 11	r r r r usof
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20 50 27 45 0.49 50 0.17 70-80 0.05 65-100	"/" "/" "/" BR/SC	80 90 80 60	2/Lmg 0/Lmg 0.5/Lmder	JK JK K K	2 (10 10	r r r r usof
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 45 0.49 50 0.17 70-80 0.05 65-100	"/" "/" BR/SC	9.) 3., BD 60	016 mg 0.5/Lmder	ĴK ĸ ⊮ K	/c /c /c	······································
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.43 50 F D.17 70-80 D.05 65-100	"/" "/" BR/SC	30 BD 60	016 mg 0.5/Lmder	k K	1.	··· ···
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.17 70-80 0.05 65-100	BR/SC	ED 60	016 mg 0.5/Lmder	<i>⊾</i> K	~	r. US of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,05,65-100	BR/SC	60	0.5/Lunder	ĸ	1	US of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A STATISTICS	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3/Luck		MidrPoo	USOF
15 10 СНО 0.8/.28 [25]. 16 10 СНО 1.4/.52 [3.6]. 117 10 СНО 1.8/.59 [3.8]. 118 3 СНО .6/.76 2.4/.	3/.5	//	60	5/1-1-1			
116 10 СНО 1.4/.52 В.6/. 117 10 СНО 1.8/.59 В.В/. 118 3 СНО .6/.76 2.4/.		1		TEGNA	<u>K</u>		361.4-
117 10 CHO 1.8/.59 3.3%. 118 3 CHO .6/.76 2.4/	17		60	1/underet Dunktlw			
118 3 CHO 6/.76 2.4/.		11	60	2/LWD	K		
			.60	1/LWD	K	[]	, .
19 7 (12 1) 11	62.65-85	(°		-	· · · · · · · · · · · · · · · · · · ·		
119 3 CHO .6/- 2.1/	,7g · · · ØF	(1		-			
120 6 Color 1.2/ - 3.20	.9/ 11	(/)	2/0/2			
121 4 color 0.8/ - 23/	0.6! "	\$	(1 / vily			
122 4 Color 1.0 / 2.9/1	.14			0/6/4			
123 92 Loho 0.8/ 2.4/0 124 :1 TRT .1/0351.2/0	ay " 🗰	- TIN 1		of on va	V	V.	
123 92 Coho 0.6/ 2.4/0 124 :1 TRT .1/0351.2/0	0.59 50		60		K	And post	Thul 2 stol
							No 11 /1
					1		

X

Dom/56 Pist/ Mop (16)Position/ Depth/ 70 (\mathbf{r}) covertype Section Notes # Fish obst Species hose V Length MeanV EC/SC 60 .41 2 1.2/~.0245-50 125 TRT L margin (4) in Run 5 1.3/.12 45-50 11 11 .415 TRT L 126 BR/SC OPH Veg/ Bark 60 1.5/5 127 CHO 2.0/ ,0570 Margin (R). n Run L LC/SC 80 128 05/13 40-45 L Hand of R. fie -> TRT 021 ۲ ۲ ____ 129 LC/SC 0.8/.38 40-45 80 .215 near Head of SC TRT L 70 120 ρs 50/16 TRT 10/14 45 5 L .61 1. 131 vS 70 11 Ч 9.7/.04 40-50 56/16 .4/ 5 L TRI 5c/B 0.4/11 40-50 .21 TRI 60 132 5 15 L Margin near 12 TRT .2.15 0,61.50 40-50 133 head of island 11 11 . 3/4 0.6.14 40-45 and 4/3C TRT 66 Run 134 2 1 al same in I. INTELL tin and the second AL ANTING ALT PAUL

(18) Map Sections Cont & L - begins at us end of Pool and ends at top of Side Channel Notes: Pistance to cover in ft. Depth in feet Velocity in ft/sec O.H. indicates overhead cover St. FT 1 1 5.1 0 1.14

APPENDIX C3

HSC Curves Used in Habitat-flow Modeling

From: Presler, Dawn [mailto:DJPresler@SNOPUD.com]
Sent: Friday, August 08, 2008 4:14 PM
To: Binkley, Keith; dreiser@r2usa.com; Keith Binkley
Subject: FW: Jackson Project (FERC No. 2157) - HSC Curves Memo forreview and comment

Here is an email from WDFW re: HSC proposal.

Dawn Presler Relicensing Information Coordinator Snohomish County PUD 425-783-1709 (phone) 425-267-6369 (fax)

-----Original Message----- **From:** Rich Johnson [mailto:JOHNSRJ@DFW.WA.GOV] **Sent:** Thursday, August 07, 2008 9:19 AM **To:** Hal Beecher; Presler, Dawn; Binkley, Keith **Subject:** Re: Jackson Project (FERC No. 2157) - HSC Curves Memo forreview and comment

Hi Dawn,

The Washington Department of Fish and Wildlife does have some concerns about how the HSCs have been calculated, but we have concluded that any re-calculated changes would be small. Therefore, we accept the proposed HSCs, except with the following request: for steelhead spawning depth, dropping to 0.2 at 3.4 feet and then continuing out.

Rich Johnson / Habitat Biologist WDFW

>>> "Presler, Dawn" <DJPresler@SNOPUD.com> 08/04/2008 10:26 AM >>> Dear ARWG Members:

The attached technical memorandum presents details of the analysis surrounding the development of site specific Habitat Suitability Curves and provides additional information to support the proposed application of revised curves for steelhead trout and Chinook salmon in the Sultan River. Please review. If you choose to comment, please do so **by Monday August 11**. This will provide us with sufficient time to complete the modeling and prepare the technical report in advance of our September 19 ARWG meeting. Comments, if any, can be emailed to me at <u>DJPresler@snopud.com</u>. If you have any further questions on the study, please contact Keith Binkley at <u>KMBinkley@snopud.com</u>. Thank you. Sincerely,

Dawn Presler

Relicensing Specialist Jackson Hydroelectric Project (P-2157) Snohomish County PUD Phone: 425-783-1709 Fax: 425-267-6369